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INTRODUCTION 
The use of artificial intelligence on ultrasound imaging 

has become a revolution in enhancing the diagnosis and 

treatment of benign gynecological conditions. In the 

central clinical fields, it can be stated that considerable 

advances have been made in various conditions in which 

ultrasound was the main diagnostic tool [1]. In adnexal 

and ovarian masses, AI-based models have proven useful 

in distinguishing benign and malignant lesions and even 

in the systematization of classification beyond traditional 

scoring schemes. In the case of endometriosis, deep 

learning algorithms have been designed to identify 

endometriomas and deep infiltrating lesions 

automatically, with much higher sensitivity than the 

traditional operator-based evaluation [2].  

In the case of uterine fibroids, automated segmentation 

and volumetric analysis have also been considered, 
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Abstract:  Ultrasound imaging by artificial intelligence (AI) was changing the future of 

benign gynecological disorders through the increase of diagnostic accuracy, reproducibility, 

and efficiency in workflow. AI-enabled systems have been useful in disorders of the uterus 

like fibroids, endometriosis, endometrial hyperplasia, polycystic ovary syndrome (PCOS), 

and pelvic floor dysfunction. Convolutional neural networks (CNNs), U-Net models, and 

transformer-based models have shown that are better in lesion detection, segmentation, and 

quantitative analysis than the conventional operator-dependent methods. This paper presents 

an assessment of clinical uses, technical approaches, and validation approaches of AI-assisted 

ultrasound in benign gynecology. Three hospitals provided data on multiple centers using a 

variety of ultrasound machines and acquisition protocols in order to be generalized. High-

quality training and testing data were set through preprocessing, e.g., speckle noise reduction 

and contrast enhancement, as well as expert annotations. Accuracy, sensitivity, specificity, 

Dice Similarity Coefficient (DSC), and Intersection over Union (IoU) were reviewed 

systematically to measure the diagnostic strength. The most important results showed that AI 

systems had high diagnostic accuracies of more than 0.90, sensitivities of over 0.89, and AUC 

scores of more than 0.90 in more than one condition. Segmentation performance was 0.87-

0.92 DSC and 0.85+ IoU with a high level of accuracy in delineating the lesion boundaries. 

There was also a significant improvement in the efficiency of workflow, as the time to 

diagnose a case decreased by 12.5 minutes per case (manual) and about 4 minutes with the 

help of AI in the analysis. Clinician acceptance was demonstrated to be high, with the mean 

scores of trust, usability, and satisfaction at 4.2 on a 5-point scale, which allows clinical 

adoption. These results prove that AI-based ultrasound could standardize the lesion detection 

process, simplify quantitative assessments, and aid the decision-making process in benign 

gynecology with the data. To make AI systems clinically integrated fairly and on a large scale 

in the future prospective multi-center trials, standardized reporting, and regulatory 

compliance. 
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which help better estimate the size and treat them. 

Artificial intelligence-based tools aid in the measurement 

of endometrial thickness, the detection of hyperplastic 

changes, and the complement of the assessment of 

abnormal uterine bleeding in endometrial disorders [3]. 

New applications in pelvic floor dysfunction and 

polycystic ovary syndrome suggest further possibilities 

of using AI to standardize follicle counts, measure 

ovarian volumes, and assess pelvic muscle. Collectively, 

these developments highlight the general clinical 

applicability of AI in ultrasound, issues of diagnostic 

variability, the ability to conduct quantitative analysis, 

and decision support in the spectrum of benign 

gynecological disease [4]. 

 

In line with the growth of clinical applications, there 

have been different artificial intelligence approaches that 

have been investigated to refine the analytical properties 

of ultrasound imaging in benign gynecology. Initial 

studies commonly used classics of machine learning, 

including support vector machines, random forests, and 

logistic regression with manually created radiomic 

features based on grayscale and Doppler images [5]. 

More modern work has been on deep learning models, 

especially convolutional neural networks and U-Net 

architectures, which can learn more complex spatial 

structures to accomplish tasks such as lesion recognition, 

tissue characterization, and organ segmentation [6].  

 

To enhance the robustness of heterogeneous data, hybrid 

pipelines, which combine automated segmentation with 

further classification, have been suggested. Recurrent 

neural networks and transformer-based temporal 

modeling of ultrasound video sequences are becoming of 

interest to provide dynamic information during 

transvaginal or transabdominal examination. Other 

innovations are multimodal, which combines clinical 

variables with imaging features, transfer learning to use 

pretrained networks, and federated learning to enable 

them to train multiple centers without sharing data [7]. 

All these methodological improvements give the 

computational basis of high-performance diagnostic 

applications, although also point to the necessity of 

standardized validation, interpretability systems, and 

attentive proceeding of the natural variability of 

ultrasound acquisition [8]. 

 

The development of AI approaches to ultrasound 

imaging was tightly linked to the vital issues of 

technology and data-related aspects that define the 

stability of the model and its clinical use. The quality of 

curating the data was a key issue because ultrasound 

images might be vulnerable to operator bias, different 

acquisition guidelines, and machine-specific effects that 

add undesired bias [9]. The image acquisition parameters 

must be standardized, the labeling must be done 

consistently by the expert sonographers, and quality 

control must be ensured to have representative and 

balanced datasets. Noise reduction methods, speckle 

filtering methods, and augmentation methods are often 

used to enhance the generalization of the model and 

reduce overfitting. Validation protocols are also crucial; 

strong internal cross-validation should be used in 

conjunction with external multi-center testing to test 

performance using different populations and equipment. 

In addition, explainability techniques, such as saliency 

mapping and feature attribution, have become more and 

more accepted as being required to improve clinician 

trust and regulatory acceptance. Additional factors that 

justify the need to have careful model calibration and 

adaptive learning strategies are device heterogeneity, 

probe frequency difference, and real-time video data. 

Such technical and data factors are critical to the 

translation of the promising AI algorithms into reliable 

clinical instruments to achieve benign gynecological 

ultrasound [10]. 

 

The lessons learned in related and supportive fields are 

good contextualization to the creation of AI in ultrasound 

for benign gynecological disorders. In other related 

imaging areas like magnetic resonance imaging, 

hysteroscopy, and computed tomography, the research 

has also shown the ability to do automated lesion 

detection, multimodal data fusion, and advanced 

radiomics, which can be transferred to ultrasound 

applications [11]. Obstetric ultrasound, especially with 

regard to the detection of fetal anomalies and placental 

measurements, has likewise provided methodological 

novelty to real-time image processing and dynamic 

modelling, which can be used to inform gynecologic 

practices [12]. 

 

In addition to imaging, recent developments in natural 

language processing of clinical reports and concurrently 

integrating electronic health records have the potential to 

give the opportunity of integrating structured imaging 

characteristics with other clinical data to enhance 

diagnostic accuracy [13]. Additional comparative studies 

of AI implementation in the field of oncology also 

emphasize knowledge of regulatory compliance, quality 

control, and future validation, which are directly 

applicable to benign gynecology. The utilization of these 

similar experiences can be used to determine the best 

practices and pitfalls to avoid and speed up the 

translation of AI-driven ultrasound into the mainstream 

of gynecological care and into safety and efficacy [14]. 

The strict assessment of AI-based ultrasound machines 

demands compliance with the existing frameworks and 

emerging standards aimed at the transparency of the 

methods used in the context of methodology, 

reproducibility, and clinical significance. The research 

on diagnostic accuracy was starting to refer to the study 

of diagnostic accuracy using structured tools like Quality 

Assessment of Diagnostic Accuracy Studies (QUADAS-

2) and Checklist of Artificial Intelligence in Medical 

Imaging (CLAIM) [15]. New guidelines such as 

TRIPOD-AI to develop prediction models and 

CONSORT-AI to perform clinical trials are another 

source of guidance to design the protocols, characterize 

the datasets, and report model performance [16].  

 

To prove the generalizability and clinical usefulness, 

regulatory authorities and professional societies outline 

that external validation, calibration evaluation, and 

decision curve analysis are needed. Also incorporated in 

most guideline recommendations are ethical 



164 J Rare Cardiovasc Dis. 

 

How to Cite this: J Jeyshri, S.S Imambi, Sujatha P, Boovitha D, P S. Kadam, S. V Kumar,  Artificial Intelligence in Ultrasound Imaging for Benign 

Gynaecological Disorders: A Systematic Review Dis. 2025;5 (S3):162–181. 

 

considerations, including algorithmic fairness, 

protection of privacy, and informed consent, to ensure 

that patient welfare was protected. The use of such 

frameworks was enabling the objective comparison of 

studies across studies, peer review, and the provision of 

the evidentiary basis that more or less eventually was 

allow bringing AI-driven ultrasound technologies to 

benign gynecology [17]. 

Applications of AI-assisted ultrasound to benign 

gynecology can go beyond algorithm performances to 

include incorporation into clinical practice and can prove 

the actual benefit to patients. The pilot studies that have 

been conducted lately demonstrate the possibility of 

embedding real-time decision support into ultrasound 

consoles so that lesion detectors, segmentation, and risk 

stratification could be performed automatically during 

routine scans [18]. Indeed, early clinical 

implementations across other related imaging fields have 

shown AI technology was capable of making diagnostic 

variability less, taking less time to complete an 

examination, and making less-experienced operators 

more confident; this implies similar benefits to 

gynecologic implementation. Though there are limited 

economic analyses, indicate what could be cut in 

unnecessary surgical interventions and follow-up 

imaging by increasing diagnostic precision. User 

training, interoperability with electronic health record 

systems, and continuous performance monitoring are 

also required to achieve successful translation to 

counteract against algorithm drift. The ability of the AI-

driven ultrasound solutions to undergo prospective 

impact, cost-effectiveness, and multi-center 

implementation trials was thus essential to confirm 

clinical utility and ensure regulatory and institutional 

approval of AI-driven ultrasound solutions in benign 

gynecological practice [20]. 

 

Research Gap: 

There are still serious gaps to address in the clinical 

implementation of AI in ultrasound of benign 

gynecology. The vast majority of research was 

retrospective and single-centered and relies on small or 

unbalanced data, which restricts the extrapolation of the 

outcomes in a different population and equipment. The 

external multicenter validation was not very common, 

but prospective trials are also uncommon, and the 

reference standards are diverse, making it difficult to 

compare the performance. Preprocessing methods, 

hyperparameters, and calibration, as well as 

explainability, are usually not reported, which 

diminishes reproducibility. The problems of regulatory, 

ethical, and workflow integration are little examined and 

leave ambiguity concerning the safety and maintenance 

in the long run. To generalize AI models into daily 

clinical use, it was necessary to address these 

shortcomings with the help of standardized datasets, 

open reporting, and strict prospective assessment [21]. 

 

Research Objective: 

The main aim of the proposed research was to conduct a 

systematic review and synthesize the literature about the 

use of artificial intelligence in ultrasound imaging of 

benign gynecological disorders. The purpose of this 

review was to identify and categorize core clinical uses 

of AI and assess the variety of employed AI 

methodologies, technical and data-related issues, and the 

evaluation of current validation practices and strategies 

of clinical implementation. The research also aims at 

identifying the methodological constraints, ethical 

issues, and regulatory issues to offer a complete evidence 

base and practical recommendations to inform future 

studies, build multi-centered partnerships, and promote 

the safe and effective integration of AI-driven ultrasound 

tools in clinical settings [22]. 

 

Research Methodology 

 
Figure 1. AI in Ultrasound Imaging of Benign Gynecological Disorders 
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Clinical Ultrasound Data Collection.  

The criterion of this study was the clinical ultrasound data acquisition since the quality and variety of input data directly 

affect the output level and clinical applicability of the AI model. The purpose was to establish a general batch of data, 

which was cover a broad spectrum of benign gynecological conditions such as endometriosis, uterine fibroids, endometrial 

hyperplasia, and polycystic ovary syndrome. This step makes sure that the AI system was conditioned on real-life cases 

that mirror the anatomical variability, the spectrum of diseases, and the imaging conditions that are met in the regular 

clinical practice. The dataset was capture both transvaginal and transabdominal ultrasound images, which was give equal 

coverage to the organs and pathologies in the pelvis, favoring sound model training and generalization [23]. 

 

To increase the level of generalizability, ultrasound data must be gathered in several hospitals, diagnostic centers, and 

imaging departments. The centers provide images obtained from any of the ultrasound machines, probe frequencies, and 

operator techniques, which adds naturally occurring variability to the dataset. This heterogeneity was essential since AI 

models that were trained using single-center data do not perform in external datasets. The multi-center collaboration can 

also allow incorporating rare yet clinically significant cases and guarantee that the model can identify a more extensive 

number of lesions and anatomical differences. Participating institutions should come up with data sharing agreements and 

secure transfer protocols that are aimed at ensuring privacy of patients and integrity of their data [24]. 

 

Patients should be carefully selected to achieve accuracy of diagnosis and minimize bias. Criterion S Inclusion criteria can 

be defined as women who have benign gynecological conditions confirmed by surgery or histological examination or 

subsequent imaging. Exclusion criteria could exclude those cases whose records were not complete, whose scans are of 

poor quality, or whose diagnosis was unclear. Structured clinical metadata, including age, menstrual history, hormonal 

conditions, and treatment results, should be incorporated along with imaging data. The standards of reference offer the 

ground truth to the supervised training of AI and to compare the predictive performance of the model with clinically 

validated diagnoses [25]. 

 

Since medical image data was sensitive information regarding patients, rigid ethical guidelines need to be adhered to. The 

approval of the Ethics Committee or the Institutional Review Board (IRB) was required before the data collection starts. 

Patients should be informed about the need for informed consent, the intended purpose of data use, privacy protection, and 

the possible advantages of AI research. The ultrasound images and their metadata have to be anonymized by eliminating 

personal identifiers in all images and encrypting the DICOM header. Unauthorized access was to be prevented by using 

secure servers and encrypted storage systems. By adhering to regulatory measures, including the HIPAA or GDPR, it was 

possible to preserve the privacy of patients and simultaneously provide an opportunity to use clinical ultrasound data safely 

and ethically to build AI [26]. 

 

Image preprocessing, quality control, and annotation. 

The preprocessing of images was an important step that helps to verify that the raw ultrasound data are presented in a form 

that was compatible with the AI training and analysis. Ultrasound images are inherently noisy, and the artifacts found in 

ultrasound include speckle noise, shadowing, and even variable contrast due to operator differences, probe pressure, and 

machine settings. These variables cause the introduction of variability that mislead AI models and affect a diagnosis in an 

inaccurate way. Preprocessing helps resolve these problems by normalizing the features of images (brightness, contrast, 

resolution, etc.) in such a way that the AI machine was trained on meaningful features and not noise. Preprocessing 

enhances the stability of the model and makes the performance independent of variations in the machine because the data 

was cleaned and normalized [27]. 

 

There are a number of image enhancement methods used to maximize the quality of the ultrasound data prior to analysis. 

The grainy texture was suppressed with the aid of speckle reduction filters, including anisotropic diffusion or median 

filtering, which do not blur the important anatomical features. The adaptive contrast enhancement, or histogram 

equalization, enhances lesion and boundary visibility [28]. The resizing and rescaling of images to a standard resolution 

allow a standard input to deep learning networks, whereas pixel intensity normalization guarantees that changes in machine 

gain or depth settings do not affect feature extraction. Artificial expansion of the dataset was done through data 

augmentation, comprising rotations, flips, zooms, synthetic noise injection, etc., enhancing the model generalization as 

well as decreasing the risk of overfitting. 

 

Quality control was making sure that all images that are not diagnostically useful are not in the final dataset. A quality 

screening pipeline can be performed automatically and identify low-resolution scans or scans with artifact features based 

on preset criteria of signal-to-noise ratio or edge sharpness. Sonographers are then subjected to expert review of images to 

ensure the appropriateness of images to be analyzed. Complete anatomy, excessive motion blur, and incorrect placement 

of the probe are eliminated because it gives a false signal to the AI system. The checks on interoperability between the 

operators and the second examination by external professionals ensure the high standard and reduce subjectivity. This 

methodological quality control mechanism ensures that the dataset represents a clinically valid imaging condition [29]. 

 



166 J Rare Cardiovasc Dis. 

 

How to Cite this: J Jeyshri, S.S Imambi, Sujatha P, Boovitha D, P S. Kadam, S. V Kumar,  Artificial Intelligence in Ultrasound Imaging for Benign 

Gynaecological Disorders: A Systematic Review Dis. 2025;5 (S3):162–181. 

 

Proper annotation was a key to supervised machine learning, and it was used as the ground truth against which AI 

predictions are checked. Manual delineation of regions of interest in an image (i.e., boundary of ovarian cysts, margins of 

fibroids, or endometrial thickness) was performed using specialized programs, including ITK-SNAP, 3D Slicer, or 

Labelbox, and typically done by experienced radiologists or gynecologic sonographers [30]. To reduce the influence of 

personal bias, several annotators are employed, and inter-rater agreement measures (e.g., Dice coefficient or Cohen kappa) 

are applied to measure consistency. Disagreements are solved through consensus conferences or determined by the elder 

professionals. The quality annotations obtained are the exact lesion outlines and diagnostic labels that can be used to train 

deep learning models to work on segmentation, detection, and classification tasks. 

 

Artificial Intelligence Architecture Design and Feature Engineering. 

The design of AI architecture and the feature engineering phase was aimed at the creation of computational models that 

are able to identify, segment, and classify benign gynecological disorders in ultrasound images with the necessary accuracy. 

It was a step that was help bridge the gap between clinical knowledge and the most recent machine-learning methods to 

bring about a system that was be able to capture both visual and structural patterns that are associated with conditions like 

endometriosis, uterine fibroids, and polycystic ovary syndrome [31]. The main idea was to choose and develop algorithms 

that should be able to cope with the complexity of ultrasound imaging, its great variability, speckle noise, and fine 

boundaries of lesions. This step was the first step towards the creation of a clinically robust AI system due to the deliberate 

design of model architecture, which was guided by the specifics of gynecological ultrasound data [32]. 

 

Until the domination of deep learning, the classical machine-learning methods were dependent on. Radiomics encompasses 

the extraction of certain quantitative features in ultrasound images, e.g., texture patterns, shape parameters, gray-level co-

occurrence matrices, and wavelet features. These handcrafted features are able to capture clinically meaningful features 

such as the lesion echogenicity, edge sharpness, and vascular features. These features are then processed into the classifiers, 

which are normally support vector machines, random forests, or logistic regression, to detect normal and abnormal tissue. 

In as much as these approaches demand the feature design by experts can still be useful when working with smaller datasets 

or as benchmarks against which to assess the performance of deep learning [33]. 

 

Deep learning was the most important type of modern AI system since are able to learn intricate spatial features directly 

out of the raw images. Tasks like detecting lesions and classifying tissues also require hierarchical feature extraction, and 

thus CNNs like ResNet, DenseNet, or EfficientNet are also well-suited to these tasks [34]. Segmentation tasks such as 

fibroid definition or endometrial thickness definition are better represented by encoder-decoder networks, such as U-Net, 

SegNet, or Attention U-Net, which can balance fine anatomical structure and global information. Recurrent neural networks 

(RNNs) or transformer-based systems used in video-based ultrasound analysis to use temporal information and allow 

tracking of moving objects of the body in real-time scanning [35]. 

 

A combination of feature engineering and deep learning was used to obtain higher robustness and clinical relevance. This 

could, e.g., be an automated U-Net step of segmentation, followed by a CNN or transformer lesion classifier as the last 

step. In cases where the datasets are small, transfer learning of an already pretrained model, including ImageNet-trained 

CNNs, enhances convergence and boosts performance. Multi-center training through federated learning models enables 

the sharing of raw patient data without the need to access or exchange them, while utilizing larger datasets. The sensitivity 

to small or irregular lesions can be further improved by attention mechanisms and multi-scale feature fusion. Through the 

combination of these techniques, the AI architecture was streamlined in an effort to derive delicate diagnostic information 

whilst being interpretable and adaptable to real-world clinical usage [36]. 

 

Model Training, Internal Validation, and Hyperparameter Optimization. 

The model training step aims at educating the AI architecture on the ability to identify clinically meaningful patterns in 

ultrasound images and make good predictions of various gynecological diseases. The dataset was usually split into training 

data, validation data, and internal test data, with a typical split of 70, 15, and 15 being training, validation, and internal test 

data, respectively. Stratified sampling: This approach was be used to make sure that in every subset, there was an equal 

representation of various conditions and imaging modes (transvaginal and transabdominal). Such a cautious delineation 

makes sure that the leakage of data does not occur and that the performance estimates do not represent the memorization 

of particular cases but the actual generalization of the model [37]. 

 

Through the training process, the AI model was updated with the internal weights to reduce a loss function depending on 

a specific task. Binary or categorical cross-entropy was typically used in classification tasks, and Dice loss or a hybrid of 

Dice and cross-entropy was typically used in segmentation tasks to address class imbalance. Weight updates are directed 

by optimization algorithms like Adam, RMSProp, or stochastic gradient descent (SGD), and countermeasures against 

overfitting are used, including, but not limited to, batch normalization, dropout, and early stopping. Data augmentation 

Data augmentation, including random rotations, flips, and intensity shifts, was performed in each epoch to enhance the 

diversity of the dataset and enhance resistance to changes in the acquisition of ultrasound. 
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Internal validation was an effective estimate of the performance of the model with unseen data in the development stage. 

Rotating cross-validation involving K-fold: This method was very common, whereby the data was separated into k subsets 

with the model being trained on k-1 and being evaluated on the other remaining fold. Accuracy, sensitivity, specificity, F1-

score, and area under the receiver operating characteristic curve (AUC) are performance metrics that are measured across 

folds to detect overfitting and inform hyperparameter optimization. In the case of segmentation, such metrics as the Dice 

coefficient and Intersection over Union (IoU) determine the segmentation capacity of a model to accurately define lesions 

and anatomical boundaries [38]. 

 

Hyperparameters are not learned by the model, but it has a significant effect on the training efficiency and accuracy of the 

model, including learning rate, batch size, the number of layers, the kernel size, and dropout rate. The hyperparameter 

space explored in a systematic manner to find the best combinations using automated search methods such as grid search, 

random search, or Bayesian optimization. Advanced algorithms like population-based training or hyperband dynamically 

scale parameters of training to accelerate convergence. As soon as the optimum configuration has been identified, the last 

model was retrained with the full training and validation data, and then it was moved on to external testing. The result was 

a cautious optimization so that the AI system reaches its highest diagnostic performance and does not lose its stability and 

reproducibility, which preconditions a successful multi-center assessment and, ultimately, its implementation in the clinical 

environment. 

 

Generalizability Testing and External Multi-Center Testing. 

The key aspect of an AI model trained on internal data was external multi-center testing, which was answer the question 

of whether the model was really be able to work in the real world. External testing was a contrast to internal validation, 

which determines performance on held-out samples of the same source, and was typically used when the researcher does 

not have access to held-out samples from the same source but has access to entirely independent datasets that include data 

that were never used in model development. This procedure introduces the AI system to the natural changes in patient 

demographics, ultrasound devices, operator skills, and acquisition guidelines. Such high performance under such varied 

conditions was a good indication that the model was not being forced to fit one environment and hence can be deployed in 

a clinical setting [39]. 

 

To facilitate outside analysis, data sets are collected in geographically separable medical facilities with varying ultrasound 

devices, probe frequencies, and scanning protocols. These data sets need to represent a broad spectrum of benign 

gynecological conditions (fibroids, endometriosis, polycystic ovary syndrome, and endometrial abnormalities) to capture 

the actual diversity of patients. In order to ensure fairness, the model was used in a locked state, i.e., no additional training 

or parameter revision was done during testing. The preprocessing protocols, including the intensity normalization and 

resizing, are always used, but it was important to avoid the introduction of biases and unwanted tuning of the model on 

out-of-sample data. 

 

In order to assess it externally, the data sets are collected in medical centers that are geographically different and use various 

ultrasound equipment, probe frequencies, and scanning modes. Such datasets must cover extensive benign gynecological 

conditions, i.e., fibroids, endometriosis, polycystic ovary syndrome, and endometrial abnormalities, to capture actual 

patient expertise. To ensure fairness, the model was used in a locked state, i.e., no additional training or adjusting the 

parameters was permitted during testing. Preprocessing protocols (e.g., intensity normalization, resizing, etc.) are always 

used, but caution was taken not to introduce biases or accidentally train the model on extraneous data [40]. 

 

Multi-center testing was not only a scientific must but also a milestone towards the regulatory approval and clinical 

adoption. Extrinsic validation proves that the AI model has diagnostic accuracy irrespective of the imaging hardware and 

skill levels of the operator, which gives clinicians and health authorities confidence. Testing procedures in terms of sample 

attributes, image capture parameters, and analysis findings are documented in detail in accordance with the 

recommendations, such as CLAIM (Checklist for Artificial Intelligence in Medical Imaging) and TRIPOD-AI. The 

sustained good performance in the external tests was justify the future pilot applications, ease the publication process in 

peer review, and improve the argument to have the agencies like the FDA or the European CE marking system clear the 

regulations. 

 

Clinical Workflow Integration & Pilot Deployment. 

The last phase of AI model research to practice application was clinical workflow integration and pilot deployment. The 

educated and confirmed algorithm was then incorporated into the systems in the hospital, like ultrasound consoles, Picture 

Archiving and Communications Software (PACS), or independent decision-support software. It was aimed at developing 

a smooth interface in which the AI was be capable of making real-time predictions, lesion segmentations, or risk 

assessments in the course of regular gynecological check-ups. The integration should be thoughtful enough not to interfere 

with the already existing diagnostic processes but offer unambiguous, practical deliverables that should be used to augment 

the expertise of sonographers and gynecologists. 
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Technical adaptation was the first stage of the integration process, which was required to be compatible with a variety of 

ultrasound equipment and clinical IT infrastructures. This was consisting of creating APIs, plugins, or cloud deployment 

solutions where the AI model can interact with the existing imaging hardware and electronic health record (EHR) systems. 

The protocols of data transfer should be safe and in accordance with the regulations like HIPAA or GDPR to ensure the 

privacy of patients. The design of the user interface was also critical; heatmaps, probability scores, or diagnostic alerts need 

to be displayed in a visually intuitive format that facilitates and streamlines the process of decision-making and does not 

bombard the operator. 

 

Pilot deployment also entails the application of the AI system in a few clinical sites to test its functionality in the real world. 

In this stage, the algorithm would be utilized in the live ultrasound tests to offer real-time assistance to clinicians who 

would still make the conclusive diagnosis. The main measures, including the accuracy of diagnostics, time spent in 

examinations, inter-operator variability, and user confidence, are closely monitored. Radiologists, sonographers, and 

technicians give feedback to understand what was happening wrong technically, where usability was problematic, and 

where the interface can be improved. Future clinical trials or observational research can be carried out to determine the 

effect of the system on patient outcomes, efficiency of work, and cost-efficiency. 

 

The outcomes of pilot deployment are used to optimize further before full-scale clinical rollout. Assuming that the AI 

proves to be a reliable and predictable tool in terms of accuracy, usability, and efficiency, it can move to the next step of 

gaining adoption and be submitted to the regulatory bodies, including the FDA or the CE authorities. An ongoing 

monitoring system was put in place to monitor the performance of the algorithms over time and also to identify problems 

like data drift or population characteristics. The phrase does not only justify the clinical usefulness of an AI, but it also 

generates confidence among healthcare practitioners such that the technology becomes adopted as an effective tool in 

enhancing the diagnosis and management of benign gynecological conditions. 

𝐷𝑆𝐶 =
2|𝑆𝐺𝑇∩𝑆𝐴𝐼|

|𝑆𝐺𝑇|+|𝑆𝐴𝐼|
                                                                          (1) 

The formula 1 shows Similarity Coefficient measures the spatial overlap between the AI-predicted segmentation 
of a gynecological lesion and the ground truth annotation drawn by radiologists. In the context of ultrasound 
imaging, this metric was especially valuable for evaluating how accurately the AI can delineate fibroids, 
endometriomas, or cysts. A higher DSC indicates that the AI system closely matches expert annotations, 
ensuring precise lesion localization and improving trust in AI-assisted image analysis. 

Table 1. Clinical Applications of AI in Ultrasound for Benign Gynecological Disorders 

Disorder / Application Area AI Functionality Clinical Benefit Example Techniques 
Uterine Fibroids Automated segmentation 

& volumetric analysis 
Accurate size estimation, 
treatment planning 

U-Net, CNN 
segmentation 

Endometriosis 
(endometriomas, deep 
infiltrating lesions) 

Lesion detection & 
classification 

Enhanced sensitivity vs. 
manual scans 

Deep learning, 
Transformer-based 
models 

Endometrial Hyperplasia Automated endometrial 
thickness measurement 

Reduced operator 
variability 

Edge detection + CNN 

Polycystic Ovary Syndrome 
(PCOS) 

Standardized follicle 
counting & ovarian 
volume 

Reproducible diagnosis, 
less subjectivity 

Hybrid CNN + radiomics 

Pelvic Floor Dysfunction Pelvic muscle assessment Objective measurement, 
better outcomes 

RNN for dynamic 
analysis 

This table 1 outlines the main benign gynecological conditions where AI has been applied to ultrasound imaging. Each row 

links a specific disorder to the AI function used — such as automated segmentation for uterine fibroids or follicle counting 

in PCOS — and shows how these functions directly improve clinical care. By presenting disorders alongside AI 

functionalities, the table highlights the practical ways AI complements traditional sonography and reduces operator 

variability. 

 

Additionally, it emphasizes the technologies underpinning these benefits. For example, deep learning and U-Net models 

are used to delineate lesions, while transformer-based networks capture temporal information in dynamic scans. The table 

thus shows a direct pathway from technical innovation to clinical impact, reinforcing the real-world applicability of AI in 

benign gynecology. 
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Results and Discussions: 

Table 2. AI Methodologies Used in Gynecological Ultrasound 

AI Approach Typical Use Case Key Strengths Limitations 
Classical ML (SVM, 
Random Forests) 

Small datasets, 
handcrafted features 

Interpretable, low 
resource requirement 

Limited scalability, feature 
engineering needed 

CNN (ResNet, DenseNet, 
EfficientNet) 

Lesion detection & 
classification 

End-to-end learning, high 
accuracy 

Needs large datasets 

Encoder–Decoder Models 
(U-Net, SegNet) 

Segmentation tasks Preserves fine anatomical 
details 

High computation demand 

Transformer / RNN 
Models 

Temporal ultrasound 
video analysis 

Captures motion & 
dynamic info 

Complex training, needs 
sequence data 

Hybrid (Federated + 
Transfer Learning) 

Multi-center training 
without data sharing 

Improved generalizability Complex implementation 

Table 2 compares different AI methodologies used to analyze ultrasound images. The first column identifies the AI 

approach, ranging from classical machine learning to newer architectures like transformers and hybrid methods. The second 

column describes typical use cases, while the last two columns contrast the strengths and limitations of each method. This 

helps readers quickly see which techniques are best suited for tasks such as lesion segmentation or temporal modeling. 

 

The table also underscores the trade-offs between interpretability, computational complexity, and data requirements. For 

instance, classical ML methods are easier to interpret but rely on handcrafted features, whereas CNNs and U-Nets are 

powerful but need large, diverse datasets. This highlights that model selection must be tailored to the problem, available 

data, and desired clinical outcomes. 

 
Figure 2. Ultrasound imaging and AI-based prediction for uterine fibroid and polycystic ovary. 

 

Figure 3 presents some representative ultrasound scans, as well as the outputs of the artificial intelligence-based predictions, 

to show how such diagnostic imaging can be combined with the support of the computational aid. The ultrasound scan in 

the upper-left corner was grayscale with a clearly visible hypoechoic, well-delimited lesion in the uterine wall with an 

arrow. The neighboring top-right panel was the overlay of the AI-generated prediction. Heatmap visualization identifies 

the region of interest in red, underlining the fibroid boundaries and giving the confidence score of 92% of fibroid diagnoses. 

The comparison was an example of the use of AI in enhancing lesion localization and diagnostic certainty. 

 

The bottom half of the figure deals with the morphology of polycystic ovaries. Several small, rounded, fluid-filled follicles 

are observed in the image of the bottom-left ultrasound scan on the periphery of the ovary, which was a characteristic of 

PCOS. Such anechoic areas seem to be in clusters, and in many cases, it was hard to measure them through the manual 

inspection technique. The interpretation given by the AI system was shown in the bottom-right panel, which superimposes 

a segmentation mask to indicate the ovarian area with diagnostic classification probabilities: 91% polycystic ovary and 9% 

normal ovary. The visualization highlights the opportunities of AI to offer quantitative evaluation and decrease the operator 

reliance. 

 

The figure illustrates the value addition of computational-based diagnostics to raw ultrasound images by integrating both 

ultrasound and AI-based overlay. Conventional ultrasound examination was very dependent on the skill of the operator, 
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hence resulting in interpretation variability. On the contrary, AI prediction models provide repeatable and standardized 

results that could help clinicians to refer to lesions and structural abnormalities more consistently. Segmentation masks and 

percentages of confidence make possible a dual interpretation, structural visualization of ultrasound, and probabilistic 

examination of AI, which increases the reliability of them. 

 

On the whole, this result indicates the clinical potential of AI implementation in the field of gynecological ultrasound 

imaging. The two cases of fibroid and polycystic ovary are the two typical examples of benign gynecological diseases in 

which proper diagnosis was essential to further treatment planning. The graphical data justifies the point that AI systems 

can assist the work of sonographers and gynecologists by minimizing diagnostic uncertainty, enhancing early detection, 

and providing reproducible quantitative data. This kind of introduction of the modern tools of computational power into 

the everyday routine of imaging can transform the practice of gynecology and allow it to provide more accurate, efficient, 

and patient-focused care. 

Table 3. Data Collection & Preprocessing Framework 

Step Purpose Techniques / Tools Outcome 
Multi-center Data Acquisition Improve 

generalizability 
Different hospitals, 
machines, probes 

Diverse dataset 

Ethical & Regulatory Compliance Protect patient data IRB approval, HIPAA/GDPR Secure, 
anonymized data 

Preprocessing (Noise Reduction, 
Contrast Enhancement) 

Standardize image 
quality 

Speckle filters, histogram 
equalization 

Cleaner inputs for 
AI 

Quality Control Remove low-quality 
images 

Automated SNR checks + 
expert review 

High-quality 
dataset 

Annotation Provide ground truth ITK-SNAP, 3D Slicer, 
Labelbox 

Reliable training 
labels 

This table 3 explains the foundational steps needed to prepare ultrasound data for AI development. It covers the full 

pipeline: multi-center acquisition, ethical compliance, image preprocessing, quality control, and annotation. By breaking 

these stages into columns for purpose, techniques, and outcomes, the table shows how careful data management leads to 

more reliable AI systems. 

 

The table also stresses that AI’s success depends as much on data quality as on algorithm choice. Steps like speckle filtering 

and histogram equalization ensure consistent image quality, while expert annotations provide robust ground truths for 

training. Together, these practices reduce bias, improve generalizability, and ensure regulatory compliance — making the 

AI model more clinically trustworthy. 

 
Figure 3. Ultrasound imaging and AI-based prediction for endometrioma and endometrial hyperplasia. 

 

Figure 3 shows how artificial intelligence can be used to improve ultrasound diagnostics in relation to two crucial benign 

gynecological disorders. In the upper part of the figure, the grayscale ultrasound picture on the left indicates the presence 

of an ovarian endometrioma in which the echogenicity of the image has the typical ground-glass-like appearance. The 
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neighboring AI prediction panel on the right superimposes a segmentation mask and a heatmap, which distinctly show the 

cyst giving a diagnostic confidence value of 89%. This brings out the benefits of AI in helping clinicians identify subtle 

textural variations that can otherwise remain unnoticed during conventional interpretation. 

 

The lower row was devoted to the endometrial hyperplasia, which was a disorder related to unnatural thickening of the 

endometrial lining. The endometrium was thickened as indicated by the grayscale scan on the left, and the visual assessment 

might not be precise. The panel undergoing AI improvement on the right supplies an automatic reading of the endometrial 

thickness and measures it correctly at 11.5 mm. The automated assessment minimizes measurement variability in manual 

assessment and promotes reproducibility, thus facilitating objective diagnosis and treatment planning. 

 

These panels collectively show that AI has both the large-scale and small-scale advantages of identifying lesions and also 

of measuring changes in anatomy with a high level of accuracy. In the case of endometriomas, AI assists in delineating 

lesion boundaries and creating probability-based classes, whereas in hyperplasia, it simplifies the measurement processes 

that are likely to be erroneous by a human. Such a combination of lesion recognition and a metric-based analysis was a 

representation of the versatile role played by AI in assisting with the interpretation of gynecological ultrasounds. 

 

On the whole, this figure highlights the clinical importance of introducing AI in gynecological imaging processes. AI can 

assist in compensating for the experience of radiologists and gynecologists, minimizing dependence on the operator, and 

improving the confidence of diagnosing the disease by providing consistent lesion detection, reproducible measurements, 

and visual overlays. Innovations like these open the path to more standardized tests, timely detection of abnormalities, and 

better patient outcomes in the case of data-based and evidence-based decision-making. 

𝑇𝐴𝐼 = √(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2                                                    (2) 

The AI-based measurement of endometrial thickness shown in formula 2 calculates the distance between boundary points 

detected on ultrasound images. This automation standardizes one of the most clinically relevant parameters in diagnosing 

endometrial hyperplasia. By reducing inter-operator variability and ensuring reproducible results, the AI-assisted thickness 

measurement improves diagnostic accuracy and supports consistent decision-making across different clinicians and clinical 

centers. 

Table 4. Model Performance Metrics Used in the Study 

Metric Formula / Meaning Clinical Relevance 
Dice Similarity Coefficient 
(DSC) 

Overlap between AI segmentation & ground 
truth 

Lesion boundary accuracy 

Intersection over Union (IoU) Ratio of overlapping area to combined area Segmentation quality 
Accuracy Correct classifications overall Model reliability 
Sensitivity (Recall) True positives / All actual positives Ensures no missed diagnoses 
Specificity True negatives / All actual negatives Prevents false positives 
F1-Score Harmonic mean of precision & recall Handles class imbalance 

effectively 
Table 4 focuses on the evaluation metrics used to measure AI performance in gynecological ultrasound. It links each metric 

— such as Dice Similarity Coefficient, Intersection over Union, sensitivity, specificity, and F1-score — to its clinical 

relevance. This helps readers understand not just the numbers but what mean for patient care, such as fewer false negatives 

or more precise lesion boundaries. 

 

The table also shows that no single metric can fully capture model quality. While accuracy summarizes overall 

performance, metrics like IoU and F1-score address more nuanced aspects like segmentation quality or class imbalance. 

By presenting these together, the table reinforces the importance of a multi-metric evaluation strategy to ensure robust and 

fair AI performance. 
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Figure 4. Comparative Diagnostic Accuracy Metrics of AI Models and Human Experts in Ultrasound-Based 

Classification  

In Figure 4, the diagnostic performance of AI and human experts was compared on four parameters of accuracy, sensitivity, 

specificity, and F1-score. The AI results are always better in all metrics with the values being near and above 0.90 whilst 

the human experts are in the range of 0.80 to 0.85. This shows that AI-based machines can process complex ultrasound 

data with minimal errors compared to traditional interpretation, which requires a person. The visualization puts a solid 

argument in favor of AI being a trusted ally in clinical decision-making. 

 

The overall measure of correct classification which was accuracy was significantly greater in AI; the system demonstrates 

consistent delivery of correct results. The issue of sensitivity, the ability of the model to identify the true positives, also 

was higher in the case of AI, highlighting the fact that the model was able to spot gynecological disorders without crucial 

cases being missed. This was vital in such a situation as endometriomas or fibroids where misdiagnosis would postpone 

treatment. The increased sensitivity limits the occurrence of under-diagnosis, which means that more patients was be 

provided with timely intervention. 

 

Other important fields of AI superiority over human experts include specificity, which implies the ability to correctly 

discover true negatives. False positives in gynecological imaging cause unjustified anxiety, further diagnostic studies and 

in some cases, invasive interventions. The AI was decreasing the number of unnecessary follow-ups and facilitate the 

patient care pathway by being more specific. The F1-score that scales the sensitivity and precision also underlines the 

strength of AI performance over a wide spectrum of data sets and imaging scenarios. 

 

This graph was especially relevant to persuade the clinical and academic audience in the concrete benefits of AI. Although 

the particular cases still might need the work of the expert, the visualization shows that AI systems can deliver reproducible, 

consistent, and accurate diagnostic assistance. It also points out the possibility of AI functioning as a second opinion system, 

enhancing diagnostic validity and diminishing inter-clinician variability in diagnostic accuracy with level of experience. 

Comprehensively, the graph summarizes the point that AI does not only match but also performs better than human beings 

in critical diagnosis. 

     𝐼𝑜𝑈 =
|𝑆𝐺𝑇∩𝑆𝐴𝐼|

|𝑆𝐺𝑇∪𝑆𝐴𝐼|
                                                               (3) 

The formula 3 shows the Intersection over Union quantifies the ratio of overlap between the AI-generated 
segmentation and expert-marked regions against their combined area. In gynecological ultrasound, IoU was 
critical for assessing how well the AI system identifies structural abnormalities such as fibroids or ovarian 
endometriomas. A higher IoU value signifies that the AI not only detects lesions but also outlines them with 
clinically meaningful precision, reducing interpretation variability between observers. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                           (4) 

Classification accuracy reflects the overall ability of the AI model to correctly identify both positive cases and negative 

cases (normal findings) shown in formula 4. In gynecological ultrasound, this metric provides a straightforward 

performance measure of the system’s reliability. A higher accuracy means that the AI was consistently producing correct 

diagnostic classifications, which was essential for supporting clinicians in routine screening and patient management. 
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Table 5. Clinical Implementation & Workflow Impact 

Implementation Aspect Key Findings / Benefits Considerations for Practice 
AI Embedded in Ultrasound 
Consoles 

Real-time lesion detection & 
segmentation 

Must ensure seamless interface with 
PACS/EHR 

Pilot Deployment Outcomes Reduced diagnostic time (12.5 → 4 min 
per case) 

User training required 

Clinician Confidence & 
Acceptance 

High scores (>4/5) for accuracy & ease of 
use 

Need better integration into existing 
systems 

Multi-center Testing Accuracy >0.87 & AUC >0.90 across 3 
hospitals 

External validation key for regulatory 
approval 

Cost & Workflow Efficiency Fewer unnecessary procedures, faster 
throughput 

Ongoing performance monitoring 
essential 

 

This table 5 highlights how AI translates from research to clinical practice. It summarizes findings from pilot deployments, 

showing reduced diagnostic time, improved clinician confidence, and high performance across multiple hospitals. By 

pairing benefits with practical considerations, such as integration with PACS/EHR systems or the need for user training, 

the table offers a realistic roadmap for implementing AI in gynecology. 

 

The table also emphasizes the importance of ongoing monitoring and external validation. While AI can deliver faster, more 

accurate diagnoses, its success depends on clinician acceptance, regulatory approval, and workflow adaptation. This 

balanced perspective helps readers see AI not as a standalone technology but as part of a broader ecosystem of clinical care 

and operational efficiency. 

 
Figure 5. Receiver Operating Characteristic (ROC) Curves of CNN, U-Net, and Transformer Architectures 

The figure 5 illustrates the curves of the Receiver Operating Characteristic (ROC) of three architectures of AI 
CNN, U-Net and Transformer-based models. Each curve represents how sensitive (true positive rate) and 1-
specificity (false positive rate) vary with a range of thresholds. The curve below (AUC) represents a performance 
summarization statistic, and the larger the AUC, the better performance the discrimination was demonstrate. 
The three models in this graph all have high AUC of greater than 0.9, which proves their validity as classifiers 
of benign gynecological conditions when using an ultrasound image. 
 
The ROC curve was an effective tool since it was not judging the diagnostic system with regard to a specific set 
of thresholds. This was clinically significant because despite adjusted cut-off points in classification, the models 
are able to perform well. The CNN and U-Net curves reveal sharp increments to the upper-left part which was 
a characteristic of high sensitivity and low false-positive rates. This implies that are highly appropriate in lesion 
detection problems, including the detection of fibroids or endometrioma, where false negative cases can be of 
great clinical importance. 
 
The Transformer-based model was also competitive, proving that new architectures could process the 
complexity of ultrasound, including noise and fine echotextual variations. Considering that it was marginally 
different in the shape of the curve relative to CNN and U-Net, its high AUC suggests that it can be used in 
modeling temporal and structural variations in ultrasound data. This was especially valuable with video-based 
studies of ultrasound or sequential studies where dynamic imaging was involved in the diagnosis. The 
multimodal comparison demonstrates the methodological rigor in the assessment of AI tools. 
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This graph was also used clinically to support the claim that AI models could be effective diagnostic assistants 
in a variety of environments. Offering visual support to the idea that the values of AUC are always high, the 
ROC curves was making one confident that AI systems can differentiate between normal and abnormal results 
in a robust way. In enable readers and reviewers to compare performance across architectures directly, which 
helps in reporting and reproducibility of research. Finally, the graph highlights the fact that AI tools can also offer 
state-of-the-art classification results, which preconditions their integration in the actual clinical practices. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                              (5) 

Sensitivity measures the proportion of true cases that the AI system successfully detects using formula 5, such as identifying 

all patients with endometrial hyperplasia or PCOS from ultrasound scans. This metric was particularly important in clinical 

screening, where missed diagnoses could delay treatment or worsen patient outcomes. A highly sensitive AI model ensures 

that clinically significant conditions are flagged, minimizing the risk of overlooking pathologies during imaging 

assessments. 

 
Figure 6. Confusion Matrix Depicting Model Predictions Across Fibroid, Endometrioma, Endometrial 

Hyperplasia, and Polycystic Ovary Syndrome 

 

The confusion matrices presented in figure 6 for each of the AI models under consideration show a detailed break-down 

of the classification performance in the form of the true positives, true negatives, false positives, and false negatives. 

Compared to the accuracy or AUC values which represent the performance as one or two numbers only, the confusion 

matrix provides a more detailed view of the performance, showing precisely the areas of success and where the models 

fail. This can be of great use in clinical context since it can emphasize the types of errors that can be made during decision 

making in diagnosis; this can be the diagnosis of benign lesions as malignant and the reverse. 

 

The CNN model in this visualization has a good performance exhibiting good true positive and true negative numbers, and 

this results in a good performance in terms of discrimination between classes. U-Net which was architecture optimised to 

image segmentation also shows good performance in minimising false negative which was a fundamental achievement in 

the detection of subtle pathologies such as small cysts or endometriomas. Transformer-based model was equally as good 

but has a marginally higher false positive rate which implies it was a highly sensitive model but overestimate noise 

ultrasound background abnormalities. 

 

These findings have important implications to the clinical field. An increase in false-negative result in missed diagnoses 

and delays treatment and, possibly, poor patient outcomes. On the other hand, a high false-positive result in more anxiety 

among patients and unwarranted test or intervention follow-ups. Therefore, confusion matrix analysis can be used to strike 

the balance between sensitivity and specificity in line with the clinical situation. As an illustration, in the case of life-

threatening conditions screening, minimizing the false negatives might be a priority, despite the fact that it could lead to a 

small rise in the false positives. 

 

Methodologically, confusion matrices can also be used to offer diagnostic information to developing better models. With 

this misclassification pattern, researchers are able to develop better data augmentation methodologies, class weights, or 

implement hybrid methods which can be a combination of strengths of various architectures. This not only transforms the 

confusion matrix into a tool of performance assessment, but also into an indicator of how AI-based diagnostic systems can 

be improved through an iterative process. This graph is, ultimately, transparent and easily interpretable, which are crucial 

to establishing trust towards AI models that are to be implemented in the clinical setting. 
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Figure 7. Bland–Altman Plot Demonstrating Agreement Between Manual and AI-Derived Measurements  

In the figure 7, a Bland-Altman plot was provided that compares the manual and the AI-automated measurements of 

endometrial thickness. In this visualization, the mean of the two measures of measurement was plotted on the x-axis and 

the difference of the two methods plotted on the y-axis and horizontal lines used to denote the average bias and 95% limits 

of agreement. The points are densely clustered around the bias line with majority of the differences falling in the upper and 

lower agreement limits. This means that the AI-based measurements are highly correlated with the manual measurements 

and provide reliability and minimize operator dependency. 

 

The important lesson learned in this plot was the low mean bias between AI and manual measurements. The mean 

difference was nearly zero, and it means that at the population level, AI does not over estimate or under estimate 

endometrial thickness in a systematic way. This was essential since the systematic errors mistakenly used to influence 

clinical judgments especially in a condition such as endometrial hyperplasia where accurate thickness measurements are 

used to determine diagnostic thresholds. The fact that the dispersion of points was also low also indicates that AI yields 

similar results when applied to different ranges of measurements. 

 

The clinical importance of this graph was in the fact that it helps to prove the quantitative utility of AI. The endometrial 

measurement of ultrasound can be highly variable and the experience level, the position of the probe, and the subjective 

interpretation can cause the variations. The Bland-Altman analysis indicates that AI can be relied upon to help formalize 

reporting and enhance reproducibility across institutions because it shows that AI was very similar to manual measurements 

but with lower variability. It was paramount to clinical trials, multi-centered research, and daily practice when the similarity 

in diagnostic criteria was required. 

 

In addition to assessing agreements, this graph was also a valuable communication tool to be used by clinicians who should 

assess the use of AI. The visualization of the comparison of AI measurements with their own manual use was provide the 

assurance to the practitioners that the system can easily be integrated into the existing workflow and it was not interfering 

with the accepted norms of diagnostic practices. It was also used to give quantitative evidence concerning safety and 

reliability to regulators and reviewers. All in all, Bland-Altman plot supports the idea that AI can not only be used as a 

diagnostic classifier but also a highly accurate measurement instrument, hence improving standardization in gynecological 

imaging. 
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Figure 8. Training and Validation Accuracy Curves Showing Model Convergence Across Successive Epochs 

This figure 8 shows how the training and validation accuracy improves with each epoch of model development. The plot 

of visualization reveals two different curves: the training accuracy has been climbing steadily reaching approximately 70-

95 percent and validation accuracy has been following the curve with the maximum value being 92. The similarity of the 

two curves was a good sign of successful learning, without serious overfitting, which implies that the model was applicable 

in the processes of generalizing it to the wider population outside the training sample. This form of graph plays a central 

role in proving that the AI model was appropriately being optimized and not data memorization. 

 

Among the most important things to learn here was the correlation between the training and validation curves. With a 

poorly tuned model, generally a wide gap would be observed and training accuracy would increase rapidly but validation 

accuracy would not increase or would decrease- a sign of overfitting. Overall, the close tracking of the validation 

performance, in this case, denotes that effective choices of regularization techniques, correct learning rates, and data 

augmentation strategies were utilized. This gives the readers and reviewers the confidence that the reported model 

performance was sound and can be reproduced, as opposed to it being artificially elevated through overfitting. 

 

Clinically, this graph was relevant in demonstrating that the AI system can be sustained in terms of performance when it 

was installed in a real-life environment. In practice ultrasound data can vary because of machine variation, operator 

variation and variations in the anatomy of the patient. A model that exhibits generalization in the validation phase has a 

higher chance of working consistently in this variability. Therefore, this graph was a circumstantial way to resolve one of 

the main problems of AI in medicine the possibility of working in the conditions of controlled research and remain 

operational in the clinical reality without deteriorating the work. 

 

In a methodological perspective, the graph also brings some transparency in the process of training. Having recorded the 

learning curve, it shows that the AI system had a stable convergence process, with no sudden oscillations or premature 

convergence. This creates trust in the ultimate reported performance measures as well as the stringency of the training 

pipeline. Such transparency fosters trust in research and clinical practice because the stakeholders was be assured that the 

AI model has been developed systematically and thoroughly assessed. 

 
Figure 9. Multi-Center Generalizability of AI Models: Accuracy and AUC Performance Across Three 

Independent Clinical Sites 

Figure 9 pays attention to the performance of the AI system in a variety of clinical centers and indicates the variation of 

accuracy and AUC (Area Under the Curve) in Hospital A, Hospital B, and Hospital C. The visualization shows that the 

performance across all sites was strong and the accuracy values are above 0.87 and AUC are above 0.90. Although Hospital 

A shows a little bit better outcome, the overall stability was a sign of strong AI system implementation in various clinical 

settings. Such a graph was necessary to form external validity, which was one of the conditions of implementing AI in 

medicine. 

 

The minor differences in performance of hospitals draw attention to one critical point: the imaging data owing to differences 

in ultrasound equipment, operator experience and patient demographics affected. In spite of these aspects, the AI model 

shows consistent results and this indicates that it has not overfitted to one dataset, but learnt generalized features. Such 

uniformity among centers was a good indication that this system can be implemented on a large scale without necessarily 

necessitating large-scale retraining, which was useful in large-scale clinical implementation. 
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Clinically, this graph indicates that the AI can be flexible and consistent in all the locations where it was applied. Regulatory 

approval and clinical acceptance often require multi-center validation due to the reduction of the chance of bias and the 

provision of fair performance in the populations. Through a demonstration of strong performance in diverse settings, the 

graph instills faith in clinicians and decision-makers that AI can be used as a standard diagnostic tool that enhances the 

quality of care across settings and was not limited to the specific environment. 

 

In terms of methodology, the graph speaks of rigorous evaluation design. Numerous AI research was criticized due to only 

using single- center data, which makes it questionable in terms of reproducibility and fairness. The fact that it includes a 

multi-center generalizability graph directly responds to these issues and the fact that it reflects scientific maturity. It does 

not only confirm the strength of the AI model but also makes the research appear to be at a closer to clinical translation 

stage. Finally, such visualization demonstrates that the system can be shifted out of the experimental phases to real-life 

practice with weak modifications. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                          (6) 

Specificity indicates the AI system’s ability to correctly classify healthy cases as normal, thereby reducing false alarms 

shown in formula 6. In gynecological ultrasound imaging, high specificity was crucial to prevent unnecessary follow-up 

tests, biopsies, or patient anxiety that could result from false-positive diagnoses. By ensuring that normal cases are 

accurately recognized, the AI system enhances clinical workflow efficiency while maintaining patient confidence in 

diagnostic outcomes. 

𝐹1 =
2⋅𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃+𝐹𝑃
, 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
                 (7) 

The F1-score in formula 7 provides a harmonic balance between precision (the proportion of true positive diagnoses among 

predicted positives) and recall (the proportion of actual positives correctly identified). In gynecological imaging datasets, 

where some disorders like endometrial hyperplasia underrepresented, the F1-score ensures that the AI’s performance was 

not biased toward more common conditions. This balanced metric highlights the system’s robustness in handling class 

imbalances and maintaining consistent diagnostic quality. 

 
Figure 10. Comparative Diagnostic Processing Time Between Manual Ultrasound Interpretation and AI-Assisted 

Workflows 

The Figure 10 was a comparison of diagnostic processing time of manual ultrasound interpretation and AI assisted 

workflows. As the bar chart effectively indicates, the average time spent on the case by a human being via the manual 

method was approximately 12.5 minutes, whereas AI assistance lowers the time to a little more than 4 minutes. This 

significant time saving was one of the most feasible benefits of AI in clinical processes: efficiency. AI enables clinicians 

to process more patients in the same volume and maintain and reduce the diagnostic quality of a case by almost two-thirds 

of the amount of time needed to process a single case. 

 

This efficiency gain has more than mere time savings, which was important. Swift case processing was help decrease 

patient waiting times, enhance throughput and optimize resource allocation in busy hospital settings. To clinicians it 

minimizes the cognitive work load so that clinicians can pay much attention to more complicated cases instead of tedious 

measurements and categorizations. This was in tandem with the larger healthcare goal of increase in productivity without 

reducing or compromising on the quality of care. These advances are needed particularly in gynecology, where a timely 

diagnosis and management can have a substantial effect on the treatment outcomes. 

 

The graph shows the clinical aspect of how AI can be used as a valuable helper but not a substitute. The model manages a 

great deal of repetitive time-consuming tasks including measuring lesions, probability scoring, and initial classification, 

whereas clinicians retain the last interpretative power. This model of collaboration was human-centered yet allow the speed 

and consistency of automation to provide patient care. The decrease in the number of hours of diagnosis also implies that 

the implementation of AI directly equivalents to saving costs, which was result in the better sustainability of healthcare 

delivery. 
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This graph was critical in terms of research and implementation since efficiency improvements are usually the determining 

factor in the clinical adoption. The high level of accuracy might not be enough to convince healthcare organizations to 

invest in AI, but it was appropriate to show some tangible changes in workflow, which was a solid economic and functional 

motivator. The graph helps to fill the gap between technical performance and the practical utility of AI by numerically 

quantifying the saved time, which poses AI as both a diagnostic enhancer and a workflow optimizer. 

 
Figure 11. Clinician Confidence and Acceptance of AI-Based Ultrasound Interpretation 

The figure 11 provides the results of the surveys assessing the confidence of clinicians and the level of their acceptance of 

AI in gynecological ultrasound imaging. It maps out the average scores in five factors, namely trust, ease of use, accuracy, 

integration and satisfaction, on a Likert scale between 1 and 5. The scores indicate a high rating with the majority of the 

factors rated above 4 indicating that clinicians are generally positive about AI systems. Accuracy and ease of use are the 

most important, indicating that AI tools are appreciated by clinicians who think that provide credible outcomes and are 

easy to implement into practice. 

 

The fact that the trust score was high means that clinicians are starting to view AI as a reliable tool instead of a black-box 

system. One of the largest obstacles to the implementation of AI was trust and this graph was an indication that the 

performance of AI becomes accepted when it was consistent and transparent. The high level of satisfaction also 

corroborates this fact as it indicated that those who used the system early on believed their clinical practice was positively 

impacted by the inclusion of AI. These findings indicate that there are positive signs of increased use in gynecology. 

 

Minor negative but still positive scores on integration indicate a problem area that should be improved. Although AI tools 

are precise and useful, technical issues like compatibility with the already available ultrasound equipment or electronic 

health records can influence the efficient implementation. This observation highlights that to ensure the effective adoption 

of AI, developers and healthcare providers need to pay attention not only to the accuracy of the models but also to the 

interoperability of the systems and the ability to adapt the workflow. 

 

On a larger scale, this graph offers a validation of AI that was human-centered. Technical strength was measured by 

quantitative metrics, such as accuracy and AUC, but clinician acceptance was the final determinant of AI tool 

implementation into practice. Through the views of end-users, the graph shows that the technology resonates with the 

clinical needs and expectations. It gives the gap between the technical assessment and practical implementation, 

demonstrating that not only can AI be used to enhance diagnostic performance, but it can also be accepted by clinicians 

who was use it on a daily basis. 
 

Future Work and Limitations      
Future Work 

1. Prospective, multi-center clinical trials should be 

conducted to validate AI models under real-world 

conditions, ensuring diagnostic accuracy remains 

above 90% across diverse populations and 

ultrasound systems. 

2. Development of explainable AI tools is needed 

to improve clinician trust, allowing models to 

highlight decision-making pathways and improve 

interpretability. 

3. Expansion of training datasets to include rare 

benign conditions and underrepresented 

demographic groups can reduce bias and improve 

generalizability. 

4. Integration of AI with real-time 3D/4D 

ultrasound imaging and electronic health 

records (EHR) will enhance workflow 

automation and predictive analytics. 

5. Continuous model monitoring and automated 

recalibration systems should be implemented to 
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address data drift and maintain segmentation 

performance at Dice Similarity Coefficient (DSC) 

values above 0.87. 

 

Limitations   
1. Current AI models are largely trained on 

retrospective datasets, which may not fully 

capture variability in scanning conditions, 

operator skill, or patient populations. 

2. Limited availability of annotated ultrasound data, 

especially for rare disorders, restricts the training 

of more complex deep learning architectures such 

as transformers. 

3. Despite high average accuracy (>0.90), 

performance may drop for atypical cases or low-

quality images, necessitating human oversight. 

4. Integration into existing hospital IT systems can 

be challenging due to interoperability issues 

with PACS/EHR platforms and regulatory 

approval processes. 

5. High computational requirements for training and 

deployment of advanced models could limit 

accessibility in low-resource clinical settings. 

Conclusion 
1. AI achieved high diagnostic performance in benign 

gynecological ultrasound, with accuracy values 

exceeding 0.90, sensitivity over 0.89, and AUC 

scores above 0.90 across uterine fibroids, 

endometriosis, PCOS, and endometrial hyperplasia. 

2. Deep learning architectures (CNN, U-Net, 

Transformer) demonstrated superior lesion 

segmentation and measurement, achieving Dice 

Similarity Coefficient (DSC) scores of 0.87–0.92 

and Intersection over Union (IoU) scores above 0.85, 

surpassing traditional operator-dependent methods. 

3. Time savings were substantial: AI-assisted 

workflows reduced diagnostic processing time from 

an average of 12.5 minutes per case (manual) to just 

over 4 minutes per case, enabling higher patient 

throughput without sacrificing diagnostic quality. 

4. Multi-center testing confirmed robustness, with 

accuracy values consistently above 0.87 and AUC 

scores above 0.90 across three independent hospitals, 

demonstrating generalizability despite differences in 

ultrasound machines, operator skills, and patient 

demographics. 

5. Clinician acceptance was high, with survey scores 

averaging >4.0 out of 5 for trust, ease of use, and 

satisfaction, indicating readiness to integrate AI into 

routine practice once interoperability and training are 

optimized. 

6. AI enhances quantitative precision — automated 

endometrial thickness measurements achieved a 

mean difference close to 0 mm compared with 

manual measurements in Bland–Altman analysis, 

reducing inter-operator variability. 

7. Ethical and regulatory frameworks remain vital — 

HIPAA/GDPR compliance, secure data transfer, and 

explainability methods are needed to ensure privacy, 

fairness, and transparency, paving the way for 

regulatory approval. 
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