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*Corresponding Author | Absfract: The increasing prevalence and mortality rate of cardiac arrest conditions
Dhiraj K Thote worldwide has made it necessary to establish preventive detection mechanisms that have the
capacity to detect early physiological abnormalities before it is too late. Traditional diagnostic
devices like electrocardiograms and Holter monitors only give periodic pictures or snapshots
of the heart's behavior but do not give continuous real-time monitoring in non-clinical settings
and hence cannot be used effectively in the prevention of sudden cardiac events. To fill this
gap, the smart monitoring system has been designed by extending wearable biosensors,
Internet of Things (IoT) frameworks, and Machine Learning (ML) algorithms to identify the
cardiac arrest and related risks in their initial stages. The system architecture consisted of
multi-sensor wearable patches that were constantly capturing essential parameters such as
electrocardiography (ECG) waveforms, heart rate (40-200 bpm), heart rate variability (HRV;
SDNN < 50 ms), blood oxygen saturation (SpOz; < 90 percent), and blood pressure (MAP <
65 mmHg). The preprocessing pipelines were used to guarantee signal fidelity through band-
pass filtering (0.550 Hz), adaptive smoothing, and Kalman filtering. Support Vector Machine
(SVM), Random Forest, Convolutional Neural Network (CNN), and Long Short-Term
Memory (LSTM) classifiers were developed to learn the ML models, with CNN and LSTM
performing the best with AUC scores of 0.92 and 0.94, respectively, as opposed to 0.81 and
0.84 for SVM and Random Forest. Bluetooth Low Energy (BLE) and Message Queuing
Telemetry Transport (MQTT) IoT gateways were used to provide secure and low-latency
delivery, and the overall alert delivery time was found to be 2.7 s. Validation trials found
sensitivity to be 93.6, specificity to be 87.4, and the F1-score to be 0.89, with user studies
finding average System Usability Scale (SUS) scores of 82.3, which were high, indicating
high acceptance. This combined structure has a great contribution to cardiac risk detection at
an earlier stage than usual in hospital facilities and provides a trusted, real-time, and
convenient method to decrease mortality relating to cardiac arrest in clinical and community
healthcare facilities.
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INTRODUCTION

Cardiac arrest Cardiac arrest was an acute and life- like ventricular fibrillation, ventricular tachycardia, and

threatening condition that was marked by an abrupt
termination of effective cardiac function resulting in the
instant loss of circulation and consciousness. It is one of
the most common causes of death in the world, and
survival is much dependent on prompt diagnosis and
treatment. The physiological processes involved are
directly related to electrical and structural heart defects

severe arrhythmias that interfere with the normal
myocardial contractility [1]. Coronary artery disease,
myocardial infarction, hypertension, diabetes, and
obesity are among the risk factors that have a great
contribution to cardiac arrest. It has been highlighted
through clinical studies that each minute of delay in the
resuscitation process lowers chances of survival by 7-10
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percent, and the necessity to employ early detection
strategies cannot be underrated. Traditional diagnostic
techniques, including electrocardiography (ECG),
echocardiography, and Holter monitoring, are very
useful in understanding the cardiac physiology, but they
have a low predictive value of sudden cardiac arrest
when it occurs outside the hospital. Dysfunction of the
autonomic nervous system, electrolyte imbalances, and
electrolyte deficiency are also included in the
pathophysiology of cardiac arrest and complicate the
timely recognition even more. Such a thorough
knowledge of the cardiac physiology as well as the
multifactorial modeling of cardiac arrest was thus needed
in the evolution of the predictive monitoring systems that
would enhance survival rates [2].

Wearable sensors have also become revolutionary
instruments in biomedical monitoring, which provides
non-invasive, continuous, and real-time detection of
physiological signals that are important in the early
detection of cardiac abnormalities. The miniaturization
of sensors, flexible electronics, and wireless
communication technologies has made it possible to
incorporate biosensors into wristbands, chest straps,
smart fabrics, and patches that can display the level of
electrocardiogram (ECG), heart rate, blood oxygen
saturation (SpO2), blood pressure, and body temperature
[3]. These sensors offer good information on the heart
functions and the circulatory health besides enabling
mobility and integration with everyday lifestyle that
cannot be achieved through conventional -clinical
devices. Although promising, signal acquisition is still
confronted by problems of motion artifacts, sensor
calibration, and interference by noise that may lead to
poor data quality and reliability in the diagnostic results.
There has been an increase in research on multi-sensor
fusion whereby combinations of physiological signals
are used in an attempt to enhance the effectiveness of
cardiac monitoring and false positives. Wireless data
transmission protocols, including Bluetooth Low Energy
and Zigbee, have been integrated to make the
communication between sensors and monitoring
platforms energy efficient. Accordingly, wearable
biomedical sensors can play a key role in the interface
between continuous physiological monitoring and
predictive analytics and therefore can be central to the
creation of smart cardiac risk detection systems [4].

The application of the IoT to the sphere of healthcare has
transformed remote monitoring and patient management,
especially when it comes to cardiovascular disease
prevention and early detection. Health monitoring
systems based on IoT using interconnected wearable
gadgets, wireless communication, and cloud computing
applications allow real-time procurement, exchange, and
data processing of physiological information. These
systems can monitor continuously both at home and in
the community setting and increase the functions of
traditional ~ hospital-based  surveillance, thereby
diminishing the possibility of undetected cardiac events
[5]. BLE (Bluetooth Low Energy), Zigbee, Wi-Fi, and
emerging 5G standards of wireless communication
provide low-latency, energy-efficient communication of

biomedical signals. The edge and cloud computing
architectures are also ideal because they allow
processing on a larger scale, as they provide scalable
storage and sophisticated analytics, such as machine
learning models to detect abnormalities. Although these
developments have been made, loT-based health systems
are prone to the threat of network reliability,
interoperability, and cybersecurity attacks, which reduce
the privacy and integrity of confidential medical
information. However, the IoT structures offer the
necessary platform to build predictive cardiac arrest
monitors through connecting the wearable sensors with
smart data processing and emergency response systems,
thus establishing a smooth ecosystem to manage
proactive health care management. ML and Al have
become potent tools in predicting and early detecting
cardiac risks and provide features that are not presented
in traditional diagnostic techniques. Based on the
analysis of big biomedical data, such as ECG signals,
heart rate variability, and multi-sensor physiological
parameters, Al-driven models can identify delicate
patterns that are the manifestations of arrhythmias,
ischemia, and pre-arrest states. Support Vector Machines
(SVM), Random Forests, and ensemble classifier
algorithms have been shown to perform well with regard
to classifying normal and abnormal cardiac states,
whereas deep learning models, most notably the
Convolutional Neural Networks (CNN) and LSTM
networks, have been found to be exceptionally accurate
at automated ECG interpretation and real-time
abnormality detection. These predictive models will
minimize the reliance on manual clinical assessment and
will enable early intervention by predicting the cardiac
events before they escalate to critical levels. In spite of
their potential, there are still obstacles to guaranteeing
generalizability of the models, reducing false alarms, and
obtaining interpretability in clinical decision-making
processes [6]. Current studies focus on the combination
of Al and IoT systems and wearable devices to develop
an end-to-end predictive monitoring system that can be
used in non-clinical and real-life conditions. As a result,
ML and AI are considered the analytic foundation of
present-day cardiac risk prediction, which allows
proactive healthcare measures, which have a strong
impact on patient safety and survival rates [7].

Real-time alert systems and mobile applications are
critical in the gap closure between cardiac risk prediction
systems and timely clinical intervention. As far as
wearable sensors and IoT devices have become a
common tool in collecting patient data, the collected data
can be easily transferred to mobile applications that can
deliver ongoing health tracking, personalized
dashboards, and interactive feedback [8]. Such
applications are not only useful to help patients monitor
vital parameters but also provide caregivers and
healthcare providers with access to real-time information
that can be utilized during decision-making. Important to
their performance are alert systems, which provide
instant notifications via push alerts, SMS, or automatic
dialing of emergency calls in cases where anomalous
heartbeats are detected. GPS technology introduction
also contributes to the system because it allows the
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emergency response of the nearest medical institutions in
an emergency. It has been noted that such integrated alert
systems are known to bring down response time in life-
threatening conditions, considerably enhancing survival
rates. In spite of these benefits, there still lies a problem
on how to prioritize the precision of warning signals
against minimization of false alarms, which would have
consequently caused alarm fatigue and patient anxiety.
However, through the use of mobile applications and
powerful alert systems, predictive cardiac monitoring
can be transformed into practical and patient-centered
health care interventions [9]. Case studies and clinical
trials represent very important evidence to determine the
effectiveness, reliability, and practicality of smart
monitoring systems in cardiac care. There are many
articles that discuss the application of wearable sensors
and loT-based solutions to patient groups at risk of
sudden cardiac arrest and associated heart diseases.

The trials have shown that continuous ECG and SpO-
monitoring can be performed both in the hospital and at
home with great improvements in the early warning of
arrhythmias and other pre-arrest conditions. Case studies
also demonstrate the real-life advantages of adopting
mobile health applications into emergency response
systems, as emergency notification alerts have directly
led to better patient death outcomes. Nevertheless, it is
also found that persistent challenges, which include
sample size, patient compliance variability, and technical
limitations that make the system scaled to larger sizes,
are present. Similar comparative research of Al-based
predictive models in clinical settings shows that although
these systems are in many ways more sensitive and
predictive, larger multicenter studies are needed to
determine their stability in a wider range of populations.
These findings, combined with the results of clinical
analysis, demonstrate the potential and the shortcomings
of smart cardiac monitoring technologies, which
supports the necessity to validate them on a systematic
basis before their universal implementation [10].

The regulatory, ethical, and data privacy issues are the
important aspects of smart monitoring systems
development and implementation that can be addressed
with cardiac risk prediction. Biomedical data is sensitive,
and therefore, healthcare laws like the Health Insurance
Portability and Accountability Act (HIPAA) in the
United States and the General Data Protection
Regulation (GDPR) in Europe, which require the secure
storage, transmission, and application of patient data, are
followed. Ethics is not just about data protection but also

Research Methodology

about informed consent, autonomy of the patient, and fair
access to sophisticated monitoring devices [11]. The
ownership of data and the clinical utility versus privacy
advocacy are also disputed issues, particularly within
cloud-based IoT systems that involve a variety of
stakeholders. Research also identifies the increasing
significance of cybersecurity, involving encryption, data
management under blockchain, and anonymization
methods, to maintain protection against illegal access
and abuse. These regulatory and ethical issues would not
only be important in ensuring compliance but also in
creating trust and ensuring a high level of acceptance of
the predictive cardiac monitoring solutions, whether in a
clinical or community center [12].

Research Gap:

Recent studies on cardiac arrest monitoring emphasize
the advancement of wearable sensors, loT systems, and
Al to predict cardiac arrest, yet various important
shortcomings persist. Wearable devices are usually
susceptible to motion artifacts, low battery performance,
and low long-term reliability. Interoperability, latency,
and cybersecurity issues affect the IoT systems, and
machine learning models are often trained on limited
datasets, which reduce their extrapolation to various
populations. Clinical trials are still small-scale
experiments, short-term trials, and scaled up, yet their
applicability has not been established. Legal and ethical
issues, especially on patient data confidentiality, are also
still present. Such gaps indicate the necessity of
integrated, validated, and secure smart monitoring
solutions.

Research Objective:

Existing products in cardiac monitoring have limitations
in the early detection of cardiac arrest, especially in out-
of-hospital cases. Holter monitors and ICU systems have
accurate readings but are not portable and alert in real
time. Current wearables also tend to be limited to the
monitoring of only one parameter, which is not reliable
for detecting complex cardiac abnormalities. Also,
challenges in signal noises, false positives, and absence
of multimodal integration diminish clinical performance.
Although machine learning has proven to be a potential,
the majority of models are not designed to be applied in
real time. Herein lies the necessity of multi-sensor, multi-
dimensional, Al-based monitoring with instant alerts to
proactive intervention.
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Figure 1. System Architecture and Research Workflow for the Smart Cardiac Monitoring System

System Architecture Design

The system architecture design is the core of the proposed project, which defines the general structure as a result of which
data gathering, processing, prediction, and alert development are implemented. These layers were broken down into several
architectures: the data acquisition layer, the preprocessing and storage layer, the prediction engine, and the application
layer. The layers were also linked to guarantee easy communication and effective management of input users, sensor data,
and predictive models. This modular design facilitates modularity, and hence the system can be expanded to accommodate
even more sensors or machine learning algorithms in the future.

The data at the level of data acquisition is obtained based on structured and unstructured datasets with text-based records,
clinical datasets, and images as needed. This raw data was handled by preprocessing modules wherein the noise removal,
normalization, and treatment of missing values are done. The processed information was either stored on the local or cloud-
based repositories according to the needs of the system. The doors of APIs and middleware elements allow two-way
communication between the source of data and the processing modules without any issues.

The architecture relied on the prediction engine that was created with machine learning algorithms, including Support
Vector Machines (SVM) and Convolutional Neural Networks (CNN), to work with structured data and images,
respectively. Training on curated datasets and cross-validation are used to validate these models so that they are reliable.
It also allows feedback in the architecture with user inputs and case results that are then used to retrain and fine-tune the
predictive models to better accuracy. This adaptive loop was needed in real-time systems where new data is continuously
available.

Lastly, there is the application layer, which includes the user interface and real-time alert system. A mobile- or web-based
application serves as the main entry point for customers, allowing them to enter the symptoms or at least upload their
clinical records, or they can get predictions. This layer had the alert system incorporated to inform the users and
stakeholders of the anticipated risks or conditions in real time. Alerts are ordered by level of severity, meaning that
emergency cases are highlighted early enough. This architecture jointly constitutes an all-encompassing and experimental
structure for carrying out the proposed system.
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Data Collection and Preprocessing

The experimental process starts with the system of data collection as the basis of the project. The main sources of structured
data are defined as clinical datasets, medical records, and publicly available repositories, and sensor readings and
information created by patients support the dataset with real-time inputs. The data gathered is multifaceted in terms of
coverage to guarantee that most areas are covered, such as demographic information, symptoms, diagnosis reports, and
treatment outcomes. Image-based data, including medical scans, was also included to enhance the ability to predict. All the
data gathered was classified and kept in a safe warehouse to be used later.

The raw dataset was first cleaned to start the preprocessing phase of removing inconsistencies. Duplicates, missing
attributes, and erroneous values are detected and removed by imputation, deletion, or correction. Noise in continuous sensor
measurements or text records was reduced by using general statistical tools or smooth filters. In images, the preprocessing
will involve resizing, conversion to grayscale, and contrast enhancement to put the data in the right format to be used in
computer vision models. These processes are well recorded to ensure reproducibility and transparency.

Numerical fields are subjected to normalization and standardization to guarantee homogenous scaling that makes machine
learning algorithms more effective. Label encoding or one-hot encoding is used to encode categorical variables, e.g., the
description of symptoms or diagnostic categories. Parallel to it, image datasets are enhanced by data augmentation to
expand the size of the training samples and minimize overfitting. All stages of preprocessing were checked through
comparison of the statistical characteristics of the processed dataset with the raw input to verify the consistency.

The last step is dataset partitioning into training, validation, and testing groups. The predictive model was created with the
help of the training set, and the validation set is applied to tune the hyperparameters and to evaluate the performance. The
testing data was to be used in conducting an objective evaluation to determine the accuracy and the generalizability of the
model. After partitioning, the datasets are safely saved in well-organized directories, and the prediction engine can retrieve
them using the standardized APIs. These ordered experimental pipelines guarantee that the data that was fed into the system
was trustworthy, constant, and machine learning optimized.

Machine Learning Model Development

The last model development stage requires selection of the right algorithms that will be utilized to predict cardiac risks.
Depending on the nature of the data, supported learning methods, including Support Vector Machines (SVM), Random
Forests, and Gradient Boosting, can be applied to structured clinical and sensor data, whereas deep learning architectures,
including Convolutional Neural Networks (CNNs), can be applied to image-related data such as ECG waveforms or cardiac
scans. The selection of each algorithm was because it is able to extract certain trends of data, such that linear and nonlinear
relationships are effectively described in the prediction model.

The preprocessing pipeline also makes sure that the input data was in the appropriate format during feeding into the models.
In the case of structured data, features are obtained, and their importance is determined by a correlation analysis and
principal component analysis (PCA) to minimize dimensionality. Simultaneously, CNNs are auto-learners of hierarchical
feature representations of medical images, whereas recurrent neural networks (RNNs) were used to process sequential
time-series data provided by wearable sensors. This dual data processing method enables the system to toddle up
multimodal data that will give a more precise and comprehensive appraisal of cardiac risk.

Hyperparameter tuning was done in a systematic way in order to maximize the performance of the models. Angular
methods, including grid search, random search, or Bayesian optimization, are used to adjust learning rates, batch size,
kernel functions, and activation parameters. The cross-validation strategies are applied to assess the models on various
subsets of data, reducing the chances of overfitting. The performance of the validation was based on such metrics as
accuracy, precision, recall, F1-score, and area under the ROC curve (AUC), which ensures that the models have both
sensitivity and specificity in identifying the risk of early cardiac arrest.

The last phase is to combine the most effective models into a single decision expression system. Ensemble methodologies
are used, where the results of several classifiers are used to increase the reliability. The encapsulated models come after
training and validation and can be called through APIs, thus can be integrated easily into the IoT-enabled monitoring
infrastructure. Training logs, performance reports, and reproducibility records of each of the models were recorded to
provide transparency and credibility in clinical use. Such a stringent model development process is used to ensure that the
system can give high accuracy and robustness in practical conditions.
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IoT Integration and Real-Time Monitoring

The starting point of the integration of IoT is the implementation of wearable biomedical sensors that are able to constantly
monitor physiological information, including heart rate, blood pressure, oxygen saturation and ECG signals. These are
sensors with microcontrollers that encode the signals and send them using wireless components such as the Bluetooth Low
Energy (BLE) or Wi-Fi. The measurements of the devices are done in controlled laboratory conditions that test the
accuracy, calibration, and consistency of the devices. The sampling rates and signal acquisition frequency are set to
optimize the data resolution and battery performance and have continuous monitoring over long periods.

This communication layer was created using a secure [oT gateway that collects the data of more than one sensor and sends
it to the cloud servers in real-time. Lightweight and efficient data transmission is achieved through Message Queuing
Telemetry Transport (MQTT) protocols, and a secure data transmission is achieved with the use of Transport Layer
Security (TLS). Measurement of latency, throughput and packet losses is carried out to ensure that the system provides
near real-time monitoring without bottlenecking of data. Redundancy communication channels are set to ensure that there
is reliability in case of network turmoil.

Data storage, pre-analysis and model inference are done on cloud based processing modules. The obtained signals are
uploaded to safe databases, and the trained machine learning models conduct continuous risk testing. The experimental
definition of alert thresholds is determined through the baseline physiological values and deviations of early cardiac arrest
conditions. The system has a dynamic nature that can alter itself to the profiles of the specific patients, and thus provide an
individualized monitoring in place of a one-fit-all-situations approach. Dashboards are designed to assist the clinician to
present real-time data, trends and alerts in a well-organized interface.

Field trials are the last validation process where performance of the system is checked on real world conditions. The
wearable devices are fitted onto patients or volunteers and observed during long periods of time. Measures like response
time of abnormal signal, data transmission reliability, and general system usability are performed and evaluated. The
outcomes are compared to current monitoring systems in the hospitals to make sure that they are clinically relevant. This
experimental integration of [oT does not only create continuous connectivity but also provides real-time monitoring which
is critical in the detection and intervention of cardiac emergency before it occurs.

Mobile Application and Alert Mechanism

The mobile application is developed based on the design of an easy-to-use interface, through which the patients and
caregivers can access real-time physiological information. The program coded the application to present the vital
parameters like heart rate, blood pressure, oxygen level, and ECG signals in tables and graphical formats. Personalized
dashboards will help users track trends over time, which will inform them about cardiac health and warning symptoms.
The usability testing was done to guarantee the ease of navigation, usability, and responsiveness to various devices and
screen dimensions.

This had been incorporated as the alert mechanism in the application that would send instant notifications when the
abnormal physiological patterns were detected. Each vital parameter has thresholds that are established experimentally
based on clinical standards and past patient records. The system sends graded alerts based on the seriousness of deviation,
and therefore key events like the risk of cardiac arrest may cause high-priority alerts. Alerts are sent via push messages,
SMS, and email, which ensure timely communication to the patient as well as the targeted caregivers and medical staff.
The application was equipped with GPS functionality, which is used to offer location-based services in the case of an
emergency. By default, the system sends the patient's real-time location to the surrounding health facilities or ambulance
services in case of an identified high-risk situation. Simulations of cardiac defects and measuring the time elapsed to notify
the concerned parties are the processes of experimental testing. Latency, accuracy of alerts, and reliability of deliveries are
measured to streamline the efficiency of the notification system.

Lastly, a field trial was carried out on the application where volunteers operate the application in real-life situations. To
measure performance, information about the responsiveness of the system, its usability, and compliance with the system is
gathered. Patient and caregiver feedback was applied to optimize the interface, alert threshold, and notification guidelines.
A mobile application combined with real-time alerts becomes an element of a proactive tracking environment, as the high-
risk events are handled in a timely and effective manner.

Validation and Testing

The validation and testing can be started with the accuracy of the sensors and the reliability of the system at the controlled
conditions in laboratories. Wearables are simply set to zero with standard medical equipment, and their measurements are
compared with the reference measurements to determine accuracy. Several tests are performed under varying conditions,
such as heart rates, body movements, and environmental conditions, to test sensor stability and reproducibility. The
integrity of the data was ensured by performing repetitions so that the system is reliable to record correct physiological
signals.

Machine learning models were evaluated based on partitioned datasets (training set, validation set, and test set) to evaluate
the predictive accuracy of the models. Measures of model reliability are in the form of accuracy, sensitivity, specificity,
F1-score, and area under the ROC curve (AUC). The experimental iterations include retraining the models on augmented
data to improve generalization, decrease overfitting, and optimize prediction thresholds. Individual model versus ensemble
methods were compared to establish the most suitable configuration in cardiac arrest detection at an early stage.
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The test was performed in real-time using the deployment of the entire system, which comprised sensors, [oT reaction,
cloud processing, and mobile notices on volunteers or artificial patient conditions. The emphasis was on testing system
latency, real-time accuracy of alerts, and reliability under the conditions of continuous monitoring. The influence of
artificial abnormal events is taken to verify the reactiveness of the alert mechanism and how it is able to alert the user and
emergency services quickly. Any mismatches or delays are put on record and rectified by means of iterative adjustments.

Lastly, extensive field tests are also run to ensure that overall system performance is validated within the real-life
environment. Long-term monitoring determines the durability, consistency of data transmission, and compliance by the
user. Respondent feedback on usability, alertness, and functionality of the mobile application was gathered to optimize
system design. The validation and testing stage will be used to ascertain that the built-in smart monitoring system is not
only reliable, accurate, and efficient, but also that it will offer a solid solution to the issue of early detection of cardiac
arrest and related hazards.

Data Security and Ethical Compliance

The smart monitoring system must have data security and ethical compliance, which will guarantee patient confidentiality
and adherence to regulations. The system uses end-to-end encryption to safeguard sensitive physiological and personal
data on the way of transmission between wearable sensors, IoT gateways, and the cloud servers. The use of secure
communication protocols like TLS and HTTPS is done to avoid unauthorized access or interception of data. Vulnerability
assessments and regular audits are undertaken to identify and address any possible security breaches to guarantee a high
level of protection during data lifecycle.

The data storage was designed with the strict mechanisms of access control. It is achieved by user authentication, role-
based permissions, and secure APIs that limit the access of data to authorized personnel. Patient records utilized in research
or training models are anonymized in order to avoid identification. The backup and disaster recovery procedures are put
down so as to ensure availability and integrity of the data in the event of system failure or accidental loss of data. It is also
important to monitor data logs continuously so that they adhere to security policies and irregularities are detected in time.
Consideration of ethics is done by seeking informed consent of all the people participating in the system trials and field
testing. The nature of data collection, its use, and the extent of monitoring are well explained to the participants. Healthcare
regulations such as HIPAA and GDPR were strictly adhered to in order to protect the rights of the patients. Transparency
is also taken into consideration in the system, where the clients are allowed to view, update, or delete their personal data
when the need arises.

Lastly, the combination of security and ethical measures proved to be efficient based on the experiment-like situations
where data breaches, attempts to access information without authorization, and withdrawal of user consent were simulated.
Critical evaluation of the system was done to ensure that it would not leak data and/or compromise on confidentiality. The
ethical audits help in the compliance of both institutional and regulatory requirements during the project lifecycle. The
monitoring system offers safe, responsible, and trustworthy management of sensitive cardiac health data by integrating the
provision of the highest level of security with the adherence to ethical standards in professional practices.

Results and discussion:
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Figure 2. Integration of Wearable Smart Patch and Mobile Application for Cardiac Monitoring

This number demonstrates how wearable sensing technology is combined with mobile-based health monitoring and how
the physiological data are recorded and sent in real time. Figure 2(a) demonstrated a smart patch-like wearable sensor
located in a discrete part of a user, which is the chest pocket. This instrument could continuously record the most important
vital parameters, like the heart rate, oxygen saturation, and irregularities in rhythm. The positioning guarantees the
noninvasive wearability as well as stable data capture, which meets one of the significant demands in the long-term
monitoring in nonclinical settings [13].

Figure 2(b) presents the interface of a mobile application that takes and processes the sensor data. The visualization of
cardiac parameters such as heart rate trends and oxygen in the blood is reflected in real time and graphically displayed in
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an understandable way to offer the user information. An emergency alert system was also prominent and automatically
alerted the user and provided critical actions whenever a threshold abnormality is detected, like cardiac arrest. The
availability of specific features with which one can reach caretakers or hospitals also contributes to the increases in the
medical viability of the system.

These two elements combined together are the features of a closed-loop monitoring architecture that involves wearable
hardware and mobile software to be intimately connected to allow around-the-clock monitoring of the cardiac health. With
the combination of unobtrusion and visualization, the system can overcome the issues of patient compliance, data quality,
and intervention in time. The emergency alert system allows this gap between the personal monitoring and the actual
medical care system such that the life-saving information can be relayed to the medical responders within a few seconds
after its detection [14].

Translationally, this is a move towards digital health technologies in the field of cardiac event prevention. The wearable
offers real-time, real-world physiological information, whereas the mobile interface can convert the information into
clinical actions for both the patients and healthcare providers. The combination of them creates an example of active and
available healthcare, which allows early detection of cardiac emergencies and the minimization of the use of hospitals in
the form of monitoring systems. This two-figure therefore embodies the spirit of patient-centered innovation in
contemporary cardiac care [15].

T —
SDNN=\/E N _(NN; — NN)? (1)

The standard deviation of NN intervals (SDNN) was derived from wearable ECG signals to quantify heart rate variability
(HRV) shown in formula 1, which reflects autonomic nervous system regulation. In cardiac arrest prediction, a significant
reduction in HRV serves as an early warning biomarker of arrhythmia or autonomic imbalance. The system continuously
computes SDNN from real-time ECG recordings, and values falling below clinically recognized thresholds are flagged as
potential indicators of elevated cardiac risk.

5p02 — Ired/lred,DC X 100% (2)

Iinfrared/linfrared,DC
Oxygen saturation was calculated using the ratio-of-ratios method from optical signals captured by the wearable device
using formula 2, typically through red and infrared light absorption. This parameter was critical because declining SpO-
levels indicate hypoxemia, a precursor to tissue hypoxia and potential circulatory collapse. Within the monitoring
framework, readings below 90% generate warning alerts, particularly when combined with ECG or HRV anomalies,
thereby improving early detection accuracy of impending cardiac arrest.

Table 1. Physiological Parameters Monitored by the System

Parameter Sensor Type Measurement Clinical Threshold Importance in Cardiac Arrest
Range Detection

ECG (R—R Smart Patch / 0.5-100 Hz Abnormal rthythm Detects arrhythmias and

Interval, QRS) Chest Electrode (AF, VF, VT) irregular conduction patterns

Heart Rate (HR)  Optical (PPG) / 40-200 bpm >180 bpm or <40 Identifies tachycardia or
ECG-derived bpm bradycardia before arrest

SpO: Pulse Oximeter / 70-100% <90% Detects hypoxemia and oxygen
PPG desaturation

Blood Pressure Cuffless Wearable  40-180 mmHg MAP <65 mmHg Identifies circulatory collapse

(BP) risk

HRYV (SDNN) ECG Sensor ms variability SDNN < 50 ms Marker of autonomic imbalance

Table 1 presents the core physiological parameters monitored by the proposed system, including ECG, HR, SpO-, blood
pressure, and HRV. Each parameter was linked to a specific sensor type, measurement range, and clinically accepted
thresholds. ECG waveforms enable arrhythmia detection, while HR variability provides insight into autonomic regulation.
SpO: serves as an indicator of hypoxemia, and blood pressure supports assessment of circulatory collapse risk through
mean arterial pressure. Together, these multimodal signals ensure a comprehensive monitoring strategy, enhancing the
early detection of cardiac arrest [16].
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Figure 3. Representative Electrocardiogram (ECG) Waveforms: Normal vs. Arrhythmic Signals
Graph 3 presents a basic diagnostic instrument for detecting abnormalities in heart functions. The graph plotted compares
a normal and arrhythmic state of the body, and the structural differences between the two states are highlighted. Normal
ECG signals indicate regular R-R intervals and the same QRS complexes, which indicate stabilization of cardiac electrical
activity. Conversely, arrhythmic signals display abnormal wave morphology and abnormal QRS forms, which are a sign
of disrupted conduction pathways or abnormal electrical activity. This comparative expression was necessary to visualize
the unique electrophysiological expressions of normal and pathological cardiac conditions [17].
A normal waveform has rhythmic oscillations and has a little noise, indicating efficient synchronization of atrial and
ventricular depolarization. The arrhythmic trace, by contrast, has other high-frequency features overlaid on the base
rhythm, which resemble fibrillary or tachyarrhythmic activity. These deviations correlate with the available clinical
indicators, according to which irregularity and fragmentation of the waveforms are early signs of ventricular tachycardia
or atrial fibrillation. The irregular peaks and the abnormal cycle lengths highlight why real-time detection is a difficult
topic, especially in wearable systems that are vulnerable to environmental noise and motion artifacts [18].
The presentation gives the background data upon which prediction algorithms are run. Machine learning processes such as
CNN and LSTM networks are highly dependent on the morphology of waveforms and time dependencies in the
classification of cardiac states. Training benchmarks of these models are the differences between normal and arrhythmic
signals as shown in this graph. Some examples of such parameters that can be extracted in the annotated waveform include
RR interval variability, QRS duration, and signal amplitude, which are quite crucial in predictive modeling of pre-arrest
conditions.
The presented comparative investigation on normal and arrhythmic ECGs supports the clinical usefulness of continuous
monitoring systems in the early diagnosis of cardiac abnormalities. Recorded in the real-time industry, wearable patches
or smartwatch-based ECG sensors are capable of sending alerts before disastrous events happen by recording such
deviations on the waveforms. The visualization justifies the need to ensure high signal fidelity and efficiency of noise
filtering in practice to ensure true pathological changes are seen with no false positives. Therefore, this graph does not only
show the physiological difference between health and risk, but it also demonstrates the technical basis needed to predict
cardiac risks correctly in IoT-enabled healthcare systems [19].

Table 2. Signal Preprocessing Techniques Applied

Signal Noise Source Preprocessing Method Purpose

Type

ECG Motion artifacts, baseline Band-pass filtering (0.5-50 Removes drift and enhances QRS

wander Hz) detection

SpO: Motion, ambient light Moving average smoothing Reduces fluctuations and false
desaturation

HR Motion noise Adaptive filtering Maintains accuracy during physical
activity

BP Sensor drift Kalman filtering Stabilizes pressure estimates

HRV ECG-derived noise Artifact correction Ensures accurate variability measures

algorithms

Table 2 outlines preprocessing techniques applied to enhance signal quality from wearable sensors. ECG signals undergo
band-pass filtering to eliminate baseline wander and noise, while SpO- and HR data are smoothed to reduce fluctuations
caused by motion or ambient light. BP measurements are stabilized through Kalman filtering, ensuring reliable
hemodynamic assessment. HRV calculations incorporate artifact correction algorithms for accurate variability estimates.
Collectively, these methods improve robustness, ensuring that machine learning models process clinically valid signals,
minimizing the influence of environmental and physiological noise [20].
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Figure 4. Multi-Sensor Overlay of Heart Rate, Blood Oxygen Saturation, and Blood Pressure Around Event Onset
Multi-sensor overlay (figure 4) is an integration of physiological data such as heart rate, blood oxygen saturation (SpO-),
and blood pressure (BP) network into a single time sequence to obtain a detailed description of the heart-based dynamics.
The visualization was constructed to record the conurbating changes in the various physiological signals in both normal
physiological conditions and the presence of a cardiac anomaly. This type of coordinated method (as opposed to
independent measurements) shows the interactions between cardiovascular markers and how a perturbation in one
parameter is usually compensated or pathologically changed by others. This type of multi-modal visualization was
necessary to identify systemic abnormalities that caused cardiac arrest at an early stage [21].

The trend plots show that there is constant heart rate variation in the first period of observation, no decrease in SpO: levels,
and normal BP was observed. Nevertheless, a significant drop in SpO2 was recorded as the event onset was reached, and
then, blood pressure gradually decreased. Autonomic imbalance and circulatory stress are seen in the heart rate curve with
irregular changes in the normal fluctuations in response. These changes have a temporal correlation, which shows the
cascade effect, in which the process of the desaturation of oxygen is followed by hemodynamic collapse, which eventually
questions cardiovascular stability. These time-varying variations shed some light on what has occurred sequentially before
arrest.

The overlay is a good example of the worth of multi-sensor fusion in predictive cardiac monitoring. Isolated ECG or HR
was not adequate to prove that something was going to happen, as it was prone to motion artifacts or other temporary
anomalies. Nevertheless, in cases where SpO- and BP are both measured at the same time, the redundancy increases the
system robustness through the problem of false positives. The paralleled curves on the graph indicate that through multi-
sensor integration, machine learning models can match multiple modalities, improving predictive performance. This
methodology is in line with the IoT-enabled healthcare paradigms, where wearable devices provide a variety of streams of
physiological information to be analyzed in real-time [22].

The clinical meaning of this graph is that it simulates the deterioration trends in the real world during cardiac emergencies.
The phenomena of SpO: and BP reduction are well-reported antecedents of hypoxemia and circulatory collapse, both of
which are antecedents of cardiac arrest. Such patterns can be visualized in real time in a mobile application, which facilitates
proactive warning, which caregivers or clinicians can act on before a life-threatening event happens. The overlay, therefore,
provides justification of the relevance of multi-parametric monitoring systems, where coherent sensor data serves to give

an aggregate picture of patient health, which is that the early warning mechanisms are consistent and clinically meaningful.

MAP = SBP+§><DBP (3)

Mean arterial pressure was computed from systolic and diastolic blood pressure values obtained from wearable or cuffless
sensors shown in equation 3, providing a measure of effective tissue perfusion. A MAP below 65 mmHg was widely
recognized as hemodynamic instability, which, if sustained, can lead to organ failure and cardiac arrest. In the monitoring
system, MAP was integrated with heart rate and oxygen saturation data to provide a multi-sensor assessment, enhancing
the robustness of predictive alerts.
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Figure 5. Bland—Altman Analysis of Heart Rate Measurements: Wearable Device vs. Clinical Reference
The Bland-Altman plot, as indicated in figure 5, was a statistical test used to test the agreement between two measurement
methods. In this study, it correlates the values of wearable sensors in relation to heart rate (HR) with the ones collected by
areference device that is clinical-grade. The aim of this graph was to assess the accuracy and reliability of wearable devices
in measuring vital cardiac parameters, which is a decisive move before developing them into predictive monitoring systems.
Bland—Altman analysis, in contrast to correlation plots that determine the linearity of the data, measures the systematic
bias and variability, which ensure that wearable sensors produce clinically acceptable degrees of agreement with gold-
standard devices [23].
The graph gives the mean of the heart rate (x-axis) versus the difference between wearable and clinical measurements (y-
axis). The points of the data are clustered around the mean difference line, which means that wearable devices tend to be
consistent with clinical measurements. The red dashed line is the average of the bias, and in this scenario, it was near zero,
meaning there was very little systematic error. The dotted lines constitute the 95 percent ranges of agreement (mean + 1.96
standard deviation), in which most of the data are clustered. Although there are some outliers outside of these limits, most
measurements show some consistency, indicating that wearable sensors can be used to reliably provide estimates of clinical
measurements in a moderate situation.
This graph confirms the applicability of wearable sensors as alternatives to clinical devices in continuous monitoring
systems. The fact that the majority of the values are located close to the 95% confidence interval indicates that the wearable
technology will be able to give relevant HR data to machine learning models without causing significant deviation from
the clinical standards. Nevertheless, the outliers indicate situations where the accuracy was compromised by motion
artifacts, skin impedance, or sensor misplacement. These results highlight the importance of preprocessing algorithms to
clean up or filter the anomalous readings prior to the utilization of the data in prediction, but to make them robust in real-
life applications [24].
The clinical implication of this plot was the fact that wearable sensors attain a degree of accuracy that is good enough to
enable the detection of early cardiac risks in non-hospital settings. Dependable consent will guarantee that clinicians and
caregivers can rely on predictions based on data gathered through wearables in order to monitor real time without
continuous clinical supervision. This is of special significance in remote or resource-constrained environments, whereby
medical-grade equipment was unavailable. Therefore, the Bland-Altman test does not only confirm the existence of
wearable technologies, but also it instills trust in the use of this technology as a fundamental aspect of the IoT-based
predictive health systems [25].

Sensitivity = , Specificity =

TP T
TP+FN TN+FP )
Sensitivity and specificity are statistical measures applied to evaluate the predictive accuracy of the monitoring system
using formula 4. Sensitivity ensures that most true cases of cardiac abnormality are correctly detected, minimizing the
likelihood of missed events, while specificity measures the system’s ability to reduce false alarms. Both metrics are
essential in validating the clinical reliability of the system, balancing patient safety with practical usability in real-world
scenarios.

AUC = [, T PR(FPR) d(FPR) (5)
The area under the receiver operating characteristic (ROC) curve was used to validate the discriminative capability of
machine learning models employed in the monitoring framework using formula 5. Higher AUC values demonstrate
superior ability of classifiers such as CNN and LSTM to distinguish between normal and pre-arrest states across varying
thresholds. This measure supports the selection of the most effective algorithm for deployment, ensuring that predictive
alerts are both accurate and clinically actionable.

Table 3. Machine Learning Models Used for Prediction
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Model Input Features Strengths Limitations AUC
Score
SVM HRYV, HR, SpO: Robust for small datasets Limited with high-dimensional 0.81
data
Random HR, SpO., BP Handles mixed features well ~ Less effective with temporal 0.84
Forest data
CNN Raw ECG Strong pattern recognition Requires large dataset 0.92
Waveform
LSTM Sequential HR, Captures temporal Computationally intensive 0.94
ECG dependencies

Table 3 compares machine learning models employed for cardiac arrest prediction. SVM and Random Forest perform well
on structured data but have limited capacity for temporal dynamics. CNN achieves higher performance by identifying
waveform patterns, while LSTM excels by capturing temporal dependencies, yielding the highest AUC score. The analysis
highlights the superiority of deep learning approaches for this application, particularly in leveraging ECG morphology and
temporal sequences. This comparison validates the system’s adoption of CNN and LSTM as core classifiers for early
cardiac event detection [26].
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Figure 6. Receiver Operating Characteristic (ROC) Curves for Comparative Model Performance (SVM, RF,
CNN, LSTM)
The 6 value indicates how various machine learning models, namely SVM, RF, CNN, and Long Short-Term Memory
(LSTM), can identify normal and pre-arrest cardiac conditions. The curve is a plot of the true positive rate (sensitivity)
versus the false positive rate (1-specificity) at different threshold values. This visualization allows us to assess all the
aspects of model robustness in order to compare discriminative capability regardless of the imbalance between different
classes [27].
The curves plotted indicate that there is a definite variance in predictive capability across the models. The CNN and LSTM
models give the curves closer to the upper-left corner, which means that they are more sensitive with a lower false positive.
This observation is further supported by the values of the corresponding Area Under the Curve (AUC), where deep learning
models beat classical models like SVM and RF. This implies that architectures with the capacity to extract temporal and
morphological characteristics using signals of physiological proof are more effective in cardiac arrest prediction. The ROC
comparison shows that deep learning frameworks only can offer clinically acceptable levels of sensitivity to early detection,
although all models are above random.
The ROC analysis justifies the selection of the model as part of the integration into IoT-enabled monitoring systems. The
large value of AUC indicates that the algorithm can be successfully applied to different patient data, and in the next practice,
the misclassification risk is minimized. Further, the curve separation gives evidence of the incremental benefit of deep
learning as compared to traditional machine learning. These understandings inform the selection of algorithms to be
deployed in order to ensure that the model selected does not only yield statistical significance but also fulfills the clinical
criterion of maximizing true positives and minimizing false alarms [28].
Its contribution to this ROC analysis was that the predictive alerts produced by the system should always be reliable and
actionable. A high-sensitivity model will ensure the detection of potential cases of cardiac arrest is hardly missed, whereas
proper specificity will not result in unwarranted alarm fatigue by patients and caregivers. Deep learning models like CNN
and LSTM have shown better performance in AUC, which gives one confidence in the applicability of the model as the
backbone of continuous cardiac monitoring systems. This reinforces the argument that the deployment of sophisticated Al
models in real-time healthcare solutions needs to be implemented promptly, thus closing the distance between the
experimental validation and the actual implementation [29].
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Figure 7. Precision—Recall Curve for Classifier Performance under Data Imbalance
The figure 7 is a good indicator of how classifiers perform in cases of data imbalance, and this was more the case when it
comes to cardiac arrest prediction, where positive events are few relative to normal readings. However, in contrast to the
ROC curve, which depicted an overly favorable picture when the negative proportion is dominant in the data, the precision-
recall curve highlights the trade-off between the fraction of genuine positive predictions relative to the whole positive
predictions (precision) and the fraction of actual positives detected (recall). This, in particular, renders it particularly
appropriate to assess predictive healthcare systems, where false alarms were to be kept to the bare minimum, and the crucial
events were to be detected in time [30].
The CNN model in the generated curve shows a good ability to retain precision in a large span of recall values, meaning
that it is strong in preserving its accuracy of predictions as the sensitivity threshold is raised. A model that maintains a high
level of accuracy at high recall rates was beneficial in clinical use because it implies that more true cardiac events can be
identified without a corresponding rise in false alerts. Conversely, the lesson models exhibit a steep drop in accuracy with
an increase in recall levels, which implies that the model has a high probability of being affected by alarm fatigue when
implemented in real-time settings.
The choice of threshold values to generate alerts is also informed by precision-recall analysis since the sensitivity and
specificity could be adjusted to the clinical requirements. As an example, thresholds were conducive to recall to prevent
false detections in high-risk patient groups but preciseness in low-risk populations to prevent unnecessary interventions.
The curve is therefore a versatile assessment instrument that goes beyond dichotomous accuracy indicators [31].
The wider implication of this analysis is the confidence that it gives the cardiac monitoring systems to be sure that they
will be implemented in the real world. A model, which exhibits positive preciseness-recalling actions, was more qualified
to provide clinically significant warnings and reduce the disturbances of false positives. This will increase patient
confidence and caregiver tolerance, which are key milestones to a large-scale implementation of wearable and IoT-related
healthcare solutions. Finally, the precision-recall curve is a tool to validate algorithms' reliability as well as an effective
decision-making aid to be used to configure predictive systems in patient-centered settings [32].
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Figure 8. Confusion Matrix Depicting Classification Outcomes of the Best-Performing Model
The 8-figure provides an excellent graphical representation of the predictive model and how it classifies the cardiac states
and the misclassifications. It also gives a direct measure of model reliability by giving the results in terms of true positive,
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false positive, true negative, and false negative. This was particularly critical in cardiac monitoring, in which false alarms
and false negative findings can severely affect patient safety and system acceptance. Expressed in classification behavior,
the matrix helps to understand the strengths and weaknesses in a granular way, unlike individual performance metrics [33].
According to the results, the selected deep learning model reveals a large amount of true positives and true negatives, which
means that the deep learning model has great discriminative ability to differentiate between normal and pre-arrest signals.
Nevertheless, there are few false negatives still present, and this brings out the problem of making sure that the sensitivity
is a hundred percent with real-life data variation. False positives are not as high in number, but the fact that they do occur
raises the question of the need to strike a balance between predictive sensitivity and specificity to ensure that trust is not
lost in the system. It is clear in the visualization where the improvements could be spent to improve the next versions of
the model.

The usefulness of the confusion matrix is not confined to numerical precision, but it also gives the understanding of possible
clinical implications. Any false negative is a missed early warning, which would cause postponement of intervention; false
positives would trigger needless alarm, which adds to patient anxiety and caregiver fatigue. The balance between these
errors can be examined by system designers to achieve optimal utility settings in terms of threshold setting and retraining
strategies. Still, the fact that the true positive rates were strong proves that the system was able to detect the early warning
signs of cardiac arrest on a regular basis [34].

Practically, the confusion matrix provides the confidence in the predictive engine, demonstrating that most predictions are
close to the real clinical conditions. To healthcare providers, this implies that the alerts provided by the system are to a
large extent reliable and implementable. The fact that the system was unlikely to produce spurious alerts but still provide
a means of timely identification of dangerous events can also provide comfort to patients. This not only renders the
confusion matrix a value of model validity but also a metric of preparedness to be integrated into the real world as a
component of wearable cardiac monitoring systems [35].
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Figure 9. Feature Importance Ranking Derived from Random Forest Model
Figure 9 represents a feature importance analysis to identify the most significant input variables in the model and provide
an insight into the driving forces behind the cardiac risk detection. The visualization shows the priorities of the model in
showing the importance of various physiological indicators by ranking features of heart rate variability, SpO:s, blood
pressure variations, and waveform features. This technique changes an otherwise opaque process of prediction into a more
interpretable framework, although it was especially useful in healthcare areas where openness and accountability of
decisions are required.
Importance scores distribution indicates that the variables related to heart thythm and oxygen saturation dominate the
predictive process, which is consistent with the known medical knowledge about the predictors of cardiac arrest. ECG
waveform-based features, like the R-R interval irregularity, are highly weighted, but the centrality of arrhythmia detection
in early warning systems is still to be explained. The dynamics of blood pressure also become topical, even though to a
smaller degree, which, in turn, proves the necessity of multi-sensor integration. The ranking structure offers the evidence
that the behavior of the model is more or less related to physiological expectations, which contributes to its reliability when
it is applied in practice.
In addition to the interpretability, this analysis allows the system design and optimization to be approached in a more
specific way. By extracting the most effective features, researchers can simplify data collection but concentrate only on
such parameters whose predictive power is maximum and the computational burden is minimal. In the case of wearable
systems, this directly affects sensor choice, power usage, and comfort to the user since irrelevant signals and unnecessary
signals can be prioritized without compromising the accuracy. The feature prioritization therefore fills the gap between
data-based modeling and the real-world use in the framework of continuous monitoring [36].
The visualization of feature importance, which comes across clinically, helps assure medical practitioners that the
predictive system was not operating on spurious or irrelevant features but rather indicates some meaningful physiological
events. This increases acceptance and trust, which are imperative to the use of Al-assisted healthcare tools. The opportunity
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to provide the reasons why a system has raised a possible cardiac risk will improve the communication process with patients
who will enjoy better awareness of factors that impact their health alert systems. The graph will thus not only confirm the
predictive framework but also ethical and transparent inclusion in patient care.
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Figure 10. Distribution of Alert Latency in Cardiac Monitoring Events
Figure 10 shows the time delay distribution between the detection of abnormal cardiac signals and effective delivery of
alerts to the end user or the caregiver. The used visualization was paramount to evaluating the ability of the system to
deliver timely notifications in emergencies, when every second directly influences the outcomes of survival. The fact that
the values are concentrated around the lower latency intervals is used to indicate that the system is responsive in most of
the instances and that the alerts are not only true but, more importantly, can be taken within the limited time frame in which
effective intervention is possible [37].
The histogram shows that most of the alerts are between two to three seconds of response time, with very few being above
it. The consistency underlines the dependability of the communication protocols that the system uses, such as Bluetooth
Low Energy and cloud-based message relays. The fact of outliers in the distribution points to the random delays, which are
caused by the instability of the network or the temporary bottleneck in the process. However, the fact that the values were
not out of the clinically acceptable limits shows that the system could retain high responsiveness in the normal operation
conditions.
Regarding performance, the latency distribution stresses the criticality of the reduction of delays in end-to-end system
architecture. The short response times minimize the chances of not getting a time to save a life through resuscitation or
medical intervention, hence increasing the clinical value of the monitoring system. The histogram also shows the ease with
which real-time monitoring frameworks can be integrated with mobile devices to deliver reliable alert delivery, even when
the network conditions are not optimal. This tradeoff between low average latency and low variability played the central
role in creating confidence in the system to be able to become emergency ready.
This visualization has a direct implication for patient care and safety. System latency is a serious parameter to be validated
in the cardiac arrest management because every minute of delay in response reduces the chances of survival significantly.
With the evidence of the alerts being received within seconds, the monitoring structure proves its ability to enhance patient
outcomes significantly when implemented in the real world. To caregivers and medical professionals, this consistency
creates confidence in the fact that the system can be used as a reliable supplement to the clinical decision-making and
emergency response processes.
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Figure 11. Battery Consumption as a Function of Sampling Rate in Wearable Devices
Battery consumption versus sampling rate The interdependence between battery consumption and sampling rate was a
critical aspect of the practical implementation of wearable cardiac monitoring systems. Fig. 11 shows that increasing
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sampling frequencies, although they offer high signal resolution, are related to a high energy consumption. The relationship
indicates the trade-off between quality and autonomy of the data device, and it has consequences including patient comfort
and long-term usability. The compromise is captured in a line plot, which illustrates the relationship to make decisions on
the best operating point, balancing accuracy and sustainability in long-term continuous monitoring [38].

As can be seen in the curve, the battery consumption remains modest at lower sampling rates, but at higher frequencies, it
is rapidly growing in proportion to frequencies as they move towards higher frequencies. This trend indicates the
exponential impact of the high-frequency acquisition on the power requirement, particularly when there are more sensors
at the same time. As an illustration, during a moderate sampling rate, the consumption percentage of battery per hour was
small, but doubling or tripling the frequency may lead to a shorter device life that is no longer viable. These results highlight
the need to select an effective but clinically adequate rate that can provide proper monitoring and long working of the
devices.

The role of the system optimization strategies in improving the endurance of devices is also highlighted in this visualization.
Unnecessary energy consumption can be reduced by techniques like adaptive sampling, where the system adapts the rates
of acquisition in accordance with the state of the patient or any irregularities detected. Moreover, incorporation of low-
power electronics and effective communication protocols is another way of boosting the overall sustainability. The line
plot, therefore, will not only give an assessment of the constraints in the system but also an outline of an engineering
solution that contributes to the viability of a real application [39].

Battery performance has a direct impact on adherence and acceptance of wearable monitoring systems, which is seen
through a patient-centered approach. Recharging causes inefficiency in the usage of the device and the likelihood of having
a device run out of charge and leaving the patients without monitoring at important times. The graph substantiates the
necessity of balance in system design, as clearly illustrated by the energy trade-offs between the various sampling
configurations, so the user can be sure of reliable monitoring without the system going too far. The balance will eventually
lead to the eventual integration of wearable cardiac technologies, which will argue in favor of their effectiveness in
delivering constant healthcare services.

Table 4. System Performance Evaluation Metrics

Metric Formula Ideal Value Role in Evaluation

Sensitivity TP/ (TP+FN) >90% Ensures true cardiac events are detected
Specificity TN /(TN+FP) >85% Reduces false alarms

Accuracy  (TP+TN)/ (TP+TN+FP+FN) High as possible  General classification reliability
F1-Score 2-(Precision*Recall)/(Precision Recall) >0.85 Balances precision and recall

Latency Detection — Alert Time <5 sec Measures system responsiveness

Table 4 lists the performance metrics used to evaluate the monitoring system, including sensitivity, specificity, accuracy,
Fl-score, and latency. Sensitivity ensures that most true cardiac events are identified, while specificity minimizes false
alarms that could cause patient anxiety. Accuracy and Fl-score provide balanced measures of overall predictive
performance. Latency captures the system’s ability to deliver alerts within seconds, which was critical in life-threatening
scenarios. The combination of these metrics provides a comprehensive evaluation framework, validating both the clinical
relevance and technical efficiency of the system.
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Figure 12. System Usability Scale (SUS) Scores Represented Across Individual Participants

Diagram 12 shows the distribution of SUS outcomes received by the participants who were involved in the interaction with
a monitoring system. Every observation will be a response of a particular participant, recording differences in the levels of
perceived usability, trustworthiness, and general user satisfaction. The line or scatter visualization enables us to visualize
not only the aggregated averages of participants but also the trends on the level of participants, providing a clearer picture
of the user experiences. It was especially relevant to healthcare technologies, in which personal disparities in perception
can have a significant impact on adoption and continued engagement [40].
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The values plotted show that the scores are more concentrated on the right side of the midline of the SUS scale, which
shows positive acceptance by the users. Nonetheless, there was also a noticeable variability between the participants, some
of them stating much higher satisfaction levels whereas others have shown moderate ones. This propagation indicates that
despite the fact that the system was widely believed to be usable, there are minor points that need to be furthered to
guarantee uniformity in the user experience. The overlaid line trend also shows over the points that there is an overall
positive trend, which is an indication that the system is working in the right direction, which is as per the established
usability standards.

The findings demonstrate that consideration of human factors assessment as well as technical performance assessment
should be incorporated. A system shows high predictive power and connectivity, and the success of the system is dependent
on the compliance of the user, which was determined by comfort, accessibility, and trust in the interface. The score
distribution will demonstrate the extent to which demographics of users or familiarity with digital health tools affect system
acceptance and would inform future design changes. The identified variability can be addressed so that the usability can
be guaranteed to be always high in different populations.

The usability results support the integrated system being available to the actual healthcare processes. The high scores of
individual persons mean that they trust and have confidence in the monitoring solution, and this confidence was a
determinant to ensure that patients wore the machine all the time and that the caregivers responded quickly to the alerts.
Meanwhile, the dispersal of the outcomes highlights the necessity to continue with the iteration and design driven by
feedback to streamline the interface and reduce the obstacles to its use. Such participant-level visualization of the outcomes
of usability is an indication that the research is devoted to patient-centered innovation, which is a pillar to universal
acceptance of smart healthcare technologies.

Table 5. Comparison of System with Existing Approaches

Parameter Proposed System Traditional Holter Hospital ICU Monitors
Monitor
Portability High (Wearable, Patch, App- Low (Wired, bulky) None (Fixed to ICU)

based)

Real-Time Alert Yes (Mobile, SMS, GPS) No (Offline analysis) Yes (Nurse station)

Multi-Sensor ECG, HR, SpO:, BP, HRV Primarily ECG ECG, BP, SpO-

Integration

Data Storage Cloud + Mobile Device memory Hospital servers

User Accessibility High (Patient + Caregiver) Low (Specialist only) Medium (Hospital
staff)

Table 5 compares the proposed smart monitoring system with traditional Holter monitors and ICU-based systems. Unlike
Holter devices, which lack real-time alerts, the proposed system integrates multi-sensor data with mobile and cloud-based
alerts. Compared to ICU monitors, it offers portability and patient accessibility, extending monitoring beyond hospital
settings. By combining wearable patch technology, mobile applications, and cloud infrastructure, the system bridges the
gap between hospital-grade monitoring and everyday use. This comparison highlights its unique contribution to
personalized, accessible, and proactive cardiac healthcare.

Conclusion

1. The suggested smart monitoring system would be 5. The system was highly predictive with a sensitivity

successful in including wearable biosensors, 0T, and
ML to facilitate the early prediction of cardiac arrest
and related risks in non-clinical settings.

Support Vector Machine and Random Forest in
terms of predictive performance (0.92 and 0.94
versus 0.81 and 0.84, respectively) and outperformed
the three machine learning models in terms of AUC.

0f 93.6, a specificity of 87.4, an F1-score 0of 0.89, and
an overall accuracy of more than 91%.
People IoT-enabled communication based on

2. The continuous multi-sensor data recording Bluetooth Low Energy and Message Queuing
(electrocardiography, heart rate 40-200 bpm, heart Telemetry Transport reached an average alert
rate variability less than 50 ms, blood oxygen delivery latency of 2.7 seconds to guarantee a real-
saturation less than 90, and blood pressure MAP less time response in case of an emergency.
than 65 mmHg) was in-depth physiological Field tests ensured reliability of the system and
information that is vital in pre-arrest forecasting. acceptability by the user, with average SUS scores of

3. Further preprocessing methods (band-pass filtering 82.3 showing high user satisfaction and adherence.
at 0.550 Hz, adaptive smoothing, and Kalman The combination of mobile applications and GPS-
filtering) enhanced the quality of signals, reducing driven emergency notifications facilitated fast
motion artifacts and noise interference. transmission of messages to caregivers and medical

4. CNN and LSTM also performed better than the teams, which reduced the distance between the time

of detection and intervention.

The system provides patient-centric care that is
portable and can be used to deliver proactive cardiac
care at home and in community settings compared to
conventional hospital-based monitoring.
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