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R included in the dataset were age, bypass time, time on ventilation, comorbidities, and
postoperative indicators of recovery. The most influential predictors that would be
contributing to the risk of POD were selected after extensive preprocessing. An internal cross-
validation and independent external test cohort were used to train and test various machine
learning algorithms such as the logistic regression, random forest, light gradient boosting
machine (LightGBM), support vector machine (SVM), and a neural network. The
performance measures used were accuracy, sensitivity, specificity, precision, recall, F1-score,
and area under the receiver operating characteristic curve (AUC-ROC). The gradient
boosting-based model has proven to be the best predictor of the company, with the highest
AUC and balanced results among all criteria. Techniques of explainability based on SHAP
values provided also showed significant clinical characteristics influencing individual
predictions, thus improving interpretability and clinical significance. The last model was
incorporated into a prototype clinical decision support system to provide patient-specific POD
risk scores at the point of care. This strategy brings up the possibility of data-driven predictive
analytics to assist clinicians in risk stratification and personalized perioperative procedures,
ultimately contributing to the alleviation of POD and increased patient safety.
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INTRODUCTION

Postoperative delirium (POD) refers to a pervasive and
serious postoperative complication, especially after
cardiac surgery (valve replacement or repair) [1].
Incidences of POD have been reported to range between
20 and 50 percent based on the age of patients,
comorbidities, and factors during surgery [2]. POD was
epitomized by acute cognitive  impairments,
disorganized cognition, and changeable levels of
consciousness, and hence, has a drastic impact on
postoperative healing [3]. Clinical research has always
demonstrated that POD was linked with extended

intensive care unit (ICU) stays, increased hospital
readmission, high healthcare expenses, and high short-
and long-term mortality [4]. Its pathophysiology was a
multifactorial phenomenon that involves
neuroinflammation, cerebral perfusion impairment, and
anesthetic effects; the selection of patients at high risk
prior to surgery was a vital issue [5]. Since the
occurrence of postoperative delirium was high among
cardiac surgery patients, much effort has been put into
the development of clinical tools to identify the condition
early on and to risk stratify patients [6]. Such tools are
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based on standardized screening and clinical
observations [7]. Although they are helpful in the
diagnosis of POD once it was diagnosed, they have low
prediction potential in the preoperative or intraoperative
stages [8]. Trendy risk scores tend to include simple
demographic and clinical factors but have no ability to
reflect nonlinear correlations among risk elements [9].
Consequently, their predictive accuracy was not high,
and sensitivity and specificity are frequently not
sufficient to be used in a clinical way [10].

Nevertheless, the weaknesses of standard risk scores
point to more detailed data sources, and electronic health
records have become an all-inclusive medium of
recording perioperative data [11]. EHR allows clinical
patterns and other risk predictors of complications,
including POD, to be identified with large-scale
retrospective analyses in cardiac surgery [12].
Nevertheless, there are difficulties, such as the
heterogeneity of data, absence of values, and the
necessity to have standardized data processing across
organizations [13]. Irrespective of these shortcomings,
EHR offers an excellent base to build predictive models,
and multiple data modalities can be integrated to improve
outcome forecasting [14]. The increased access to
organized and unstructured EHR data has opened the
doors to the more sophisticated methods of computation,
with machine learning being a promising avenue of
discovering the latent patterns and forecasting clinical
outcomes with greater precision [15]. ML models have
been used in perioperative care to predict complications,
including acute kidney injury, long-term mechanical
ventilation, and surgical site infection [16]. In contrast to
traditional regression-based methods, ML algorithms
have the ability to learn in a high-dimensional and
adaptive way, enhancing prediction quality and
reliability [17].

Random Forests, Gradient Boosting Machines, and
Neural Networks are a few examples of the models used
in predicting mortality, ICU stay, and neurological
complications in cardiac surgery [18]. They are
especially effective at predicting POD due to their ability
to handle large volumes of both structured and
unstructured data provided by EHR and engage many
factors interacting in complex manners [19]. In order to
achieve the maximum benefit of such machine learning
models, it was necessary that the raw clinical data be
carefully engineered into meaningful predictors of
postoperative delirium [20]. Logistic regression was
interpretable and can have problems with nonlinear
patterns [21]. Random Forests and Gradient Boosting
Machines (e.g., XGBoost, LightGBM) are simpler to use
but provide higher accuracy of predictions and ranking
of feature importance [22]. Support Vector Machines are
useful in high-dimensional data but have to be tuned on
parameters [23]. Neural networks have been shown to be
effective at modeling complex interactions, but these
have been criticized as being a black box [24]. In
healthcare prediction, comparative studies have always
identified a trade-off between the accuracy of a model
and its interpretability, and often single classifiers are
outperformed by ensemble methods [25]. When the

features of interest are identified, various machine
learning algorithms can be compared, each offering its
own advantages and disadvantages to healthcare
prediction problems [26].

CDSS can also provide real-time estimates of
postoperative complication risks, which in cardiac
surgery allow implementing early interventions and
individual management approaches [27]. The usefulness
of CDSS was that it helps to close the gap between
complicated machine learning models and clinical
applications [28]. An effective implementation involves
making the right predictions as well as having the right
intuitive interfaces, interpretability, and integration with
the existing hospital information systems [29]. Research
has proven that CDSS improves patient safety,
minimizes medical errors, and improves postoperative
outcomes [30]. Nonetheless, there are still difficulties in
how to be transparent with models, reduce alert fatigue,
and keep clinician confidence [31]. The most precise
models do not have a clinical impact unless they are
incorporated into decision support systems, which
convert predictions into insights that can be taken into
practice by healthcare practitioners [32]. The key factors
are patient privacy and informed consent and adherence
to data protection laws, including HIPAA and GDPR
[33]. Moreover, trained ML models can create biased
predictions and maintain healthcare disparities due to
bias in the model, whether based on imbalanced datasets
or on unrepresentative populations [34]. It was also
necessary to be transparent and explainable to make
predictive outputs reliable to both clinicians and patients
[35]. The aspect of legal responsibility regarding wrong
predictions poses other issues, especially in a high-stakes
scenario like cardiac surgery [36]. The solution to these
problems lies in strict validation, open reporting, and
development of ethical frameworks that can deliver a
balance in innovation and patient safety [37]. These
ethical and legal issues are essential in POD prediction
because of the need to have safe, fair, and clinically
acceptable models [38].

Research Gap

The existing strategies of predicting postoperative
delirtum during cardiac surgery are not sufficient
because the conventional screening instruments lack
accuracy and have no ability to identify the intricate
interaction among risk factors. Electronic health records
are not used to the fullest to come up with advanced
predictive models, despite offering huge volumes of
perioperative information. Machine learning has
demonstrated effectiveness in the prediction of the
outcome, but there are not many studies about the
specific problem of postoperative delirium in cardiac
valve surgery. The comparative analysis of algorithms,
the effective feature engineering, and its implementation
into clinical decision support systems are seldom
discussed. The presence of such ethical dilemmas as bias,
transparency, and accountability was another indicator of
the necessity of better predictive frameworks.

Research Objective
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This study aimed to formulate and test the model
predictive tools that would help to recognize accurately
the patients with risks of development of postoperative
delirium (POD) during the period after the cardiac
surgery. This entailed the acquisition of real-time
clinical, demographic, intraoperative, and postoperative

contribution of each risk factor based on the feature
importance and explainability methods and develop a
prototype clinical decision support model capable of
incorporating these forecasts into the perioperative
processes to stratify risks in time and provide better
patient treatment outcomes.

data, after which several machine learning algorithms
were used to identify the most efficient predictive
strategy. The research also sought to identify the
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Figure 1. Methodology Flow Chart

Model Development

Data Collection

The electronic health records (EHR) of all patients who had cardiac valve replacement or repair surgeries in a dedicated
cardiac surgery unit were used to collect the data on a retrospective basis. The time frame of the study was between January
2022 and December 2024, and it entailed obtaining a detailed perioperative data between the time of admission and
discharge. Inclusion criteria were adult patients who were undergoing elective surgery on their valves, whereas the cases
with unfinished medical records or with a history of pre-operative cognitive disorder were avoided to maintain the
consistency of data.

A total of 50 patient records comprising of various demographic and clinical characteristics formed the dataset.
Demographic variables that were recorded were age, sex, body mass index, preoperative comorbidities (diabetes,
hypertension, and renal dysfunction), laboratory (hemoglobin, electrolytes, and creatinine), and intraoperative variables
(cardiopulmonary bypass time, aortic cross-clamped time, blood loss, requirement to receive transfusion, and anesthetic
exposure). EHR documentation and progress notes were also used to extract postoperative parameters like mechanical
ventilation time, length of stay in the ICU, length of stay in hospital, and the existence or absence of postoperative delirium.
To ensure confidentiality and adherence to the ethics, all information concerning patients was de-identified prior to the
analysis. An independent institutional ethics committee gave approval to the use of the data and the individual informed
consent was not required because the study was retrospective. Trained data specialists were used to extract and verify data
and save the accuracy and completeness. The last data was used to create and test machine learning models that predict
POD risks.

Data Preprocessing

Preprocessing of data commenced with precleaning the electronic health record dataset in order to have accuracy and
consistency. Such errors, like entries being made twice and inconsistencies in the coding of categorical variables, were
rectified. To put the continuous variables into similar ranges, continuous variables such as hemoglobin, sodium, creatinine,
and cardiopulmonary bypass time were normalized. This step of normalization reduced the effect of the different
measurement scales, and it improved the operation of machine learning algorithms, which are prone to different data size
differences. Standardization of values allowed the individual features to make a proportional contribution in predicting
postoperative delirium [39].

Categorical variables of gender, diabetes, hypertension, and renal dysfunction were coded into numerical variables that
could be computed using computational models. Nominal categories were encoded using one-hot methods to be converted
into numbers, while binary variables were converted into their numerical values. This transformation did not artificially
order the information held in categorical variables, the maximum artificial order. Encoding was a critical process since it
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enabled machine learning models to operate on mixed data types and discern nonlinear relationships between clinical
factors leading to delirium risk in the following cardiac valve surgical operation.

Missing entries were handled to avoid the bias and information loss. Continuous variables whose data were missing were
filled with mean values, and the categorical variables were filled with mode substitution. This guaranteed completeness of
data and clinical plausibility. Interquartile range analysis was used to identify outliers, which included very high laboratory
values or the duration of bypass. The extreme values detected were checked thoroughly, and in cases where needed, the
extreme values were manipulated or eliminated to minimize distraction of the model training. The steps enhanced the
accuracy of the dataset and enhanced its predictive modeling suitability [40].

The data exhibited an unequal distribution of the patients having postoperative delirium and those who did not have it,
which might have biased model training to the majority group. To deal with this problem, Synthetic Minority Oversampling
Technique (SMOTE) was used to create synthetic representatives of the minority group. Such a technique generated new
clinically realistic data points through interpolation between known cases of delirium, enhancing the allocation of outcome
classes. The balancing of the dataset enabled the models to equally learn on both groups, which increased sensitivity with
respect to detection of delirium and the overall strength of the predictive framework.

Feature Selection and Engineering

The process of feature selection started with the identification of clinically meaningful predictors of postoperative delirium
in cardiac valve surgery. Demographic factors like age, sex, and body mass index were given importance since they have
proven relevance in determining the outcomes of surgical procedures. Clinical comorbidities such as diabetes,
hypertension, and renal dysfunction were also included that indicate the systemic health of patients. The parameters used
as indicators of preoperative physiological reserve were laboratory parameters such as hemoglobin, electrolytes, and
creatinine. All these factors gave a complete picture regarding the baseline patient characteristics that are pertinent to the
assessment of delirium risks.

Intraoperative data were used to measure risk factors that directly related to surgical exposure. The duration of
cardiopulmonary bypass was also considered as a vital predictor of cerebral perfusion and metabolic stress, both of which
are predictors of postoperative cognitive complications. Blood transfusion conditions were chosen because they are related
to hemodynamic instability and inflammatory reactions. The exposure to anesthetics was also taken into account because
neurocognitive dysfunction has been observed to be caused by prolonged anesthesia. These intraoperative measures were
included to make sure that the set of features was able to capture patient-specific and surgery-specific factors of
postoperative delirium.

Another parameter that was chosen in order to obtain immediate recovery patterns that could predispose patients to delirium
was postoperative parameters. The duration of stay at the intensive care unit was used as a proxy of clinical instability and
a prolonged observation time. The ventilation time was also implemented as a property that indicates respiratory
dependence and protracted exposure to tranquilizing drugs. These postoperative indicators had supplementary predictive
power, in that they were indicators of responsive reactions of patients after surgery. The integration of the preoperative,
intraoperative, and postoperative variables formed a multidimensional dataset that was appropriate in machine learning-
based prediction.

After defining the features, engineering approaches were used to maximize their predictive ability. The continuous
variables were made normal and were scaled to have a low level of variability in the measurement units and to provide
balanced input to the model. Recursive feature elimination was applied to carefully select the most significant predictors
in a systematic and orderly manner and eliminate redundancy. The process minimized the chances of overfitting and
boosted model interpretability. The resulting engineered dataset was a cleaned-up set of clinically and statistically
significant features, which forms a solid basis of machine learning models predictive of postoperative delirium in patients
undergoing cardiac valve surgery.

Model Development

In the development of the model, multiple machine learning algorithms were trained and evaluated using the predictive
attributes to identify the postoperative delirium in the cardiac valve surgery patients. The reason why logistic regression
was selected was that it was easy to interpret, and it can develop baseline performance based on linear relationships between
predictors and outcomes. Random Forest has been added because it was also an ensemble model since it could incorporate
several decision trees, and thus nonlinear relationships and interactions between clinical features are possible. LightGBM
and gradient boosting machines were chosen due to their high efficiency in operating high-dimensional data and ability to
get better predictive accuracy in clinical data.

To investigate the appropriateness of Support Vector Machines to the model of high-dimensional clinical variables, the use
of kernel functions to describe nonlinear demarcation between delirium and non-delirium populations was included. Neural
networks were applied to take advantage of their ability to detect the complex, layered interactions of demographic,
intraoperative, and postoperative characteristics. Their hierarchical representations were what suited them especially well
in multifactorial results such as postoperative delirium, though their interpretability was a limitation. The combination of
both classic and modern models made sure that there was a leveled comparison between clear-cut statistical procedures
and strong yet uninterpretable deep learning models.

The maximization of predictive efficiency was done on hyperparameter optimization to maximize the predictive efficiency
of all the models. The grid search methodology was used to systematically consider a set of parameter combinations,
including learning rates, maximum depth of trees, the number of estimators, kernel functions, and regularization
coefficients. In order to avoid overfitting and to provide robustness, the k-fold cross-validation was conducted, and this
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divided the dataset into training and validation subsets severally. The procedure yielded consistent performance estimates
in a wide range of subgroups of patients and increased the extrapolation of the models to unobserved data.

All algorithms were tested in a comparative context to find out which predictive model was the most appropriate to use in
postoperative delirium. Logistic regression was clear in explaining independent risk factors, but the random forest and the
gradient boosting machines showed good results in nonlinear interactions. Neural networks and support vector machines
presented high predictive capability in complicated data conditions, although their decipherability was hard. The tabulated
comparison pointed out the trade-offs between transparency, computational complexity, and predictive accuracy, thus
guiding the choice of the most applicable models to be used in clinical integration to predict postoperative delirium risk.

P&y =1lx) = 1 + e—(Bo+Bix1+B2xz++fnxn) M
In Equation 1, the probability of an outcome to occur was computed using a number of input features. The coefficients f3;
show how much each specific clinical or perioperative variable contributes to the overall prediction. It aids in the
quantification of the strength of the increasing and decreasing effect of each factor on the probability of occurrence of the
event.

n
Z=Zwl-xi+b )
i=1

The most important operation within every neuron of a neural model was equation 2, which was a combination of weighted
inputs and a bias term. It enables the model to extract nonlinear patterns in the clinical data which are complex to learn.
Training the w; helps the system to tune to the ability of identifying subtle predictors.
Experimental Setup
All machine learning models were taken in Python through scikit-learn, LightGBM, and TensorFlow libraries. The data
were randomly divided into the training and testing subsets of 80 percent and 20 percent, respectively, and the performance
of the models was also confirmed through cross-validation of 5 folds in order to reduce overfitting. Preprocessing of data
and feature scaling were done prior to the model training so as to standardize the input variables.
In the case of gradient boosting (LightGBM), the learning rate was 0.05, the maximum boosting iteration was 500, the
maximum tree depth was restricted to 6, and the number of leaves was 31. RF models were trained with 500 estimators
and a maximum depth of 10 and Gini impurity as the split criteria. The Support Vector Machine (SVM) models were
configured with an RBF kernel having the regularization parameter C=1.0 and the coefficient of the kernel 0.1. The logistic
regression models were trained to achieve an L2 regularization penalty and regularization strength C=1.0.
The neural network model was implemented as a feedforward architecture with one input, two hidden layers with 64 and
32 neurons each, and one sigmoid output neuron. Hidden layers had the ReLU activation function, and the model was
optimized using the Adam optimizer with a learning rate of 0.001. The batch size was set to 16 and 100 training epochs,
and the validation loss early stopping was implemented to avoid overfitting.
Model Evaluation
A systematic validation framework was used to perform model evaluation to guarantee good predictive performance
evaluation. The dataset was split into a hold-out test set to give a bias-free generalization of the model. Moreover, it used
k-fold cross-validation by splitting the dataset into several subsets that were used in repeated training and validation. This
approach reduced the difference in performance forecasts and enhanced the strength of the analysis, especially when using
heterogenous clinical data on patients who underwent cardiac valve surgery.
Each algorithm's predictive accuracy was measured with a variety of evaluation measures to reflect various model
behaviors. The accuracy was used to determine the general rate of correct classification, and sensitivity evaluated the
capacity to recognize the patient at risk of developing postoperative delirium. Specificity was computed to assess the ability
of the models to discriminate non-delirium cases, thus minimizing false alarms. Collectively, these measures were used to
give a good picture of the quality of prediction in both positive and negative results.
Additional tests were precision, recall, and F1-score, which highlights the trade-off between false positives and false
negatives. Precision was used to indicate the accuracy of delirium predictions in positive cases, whereas recall indicated
the usefulness of the model to identify genuine delirium patients. The F1 score, being the harmonic mean of precision and
recall, provided only one measure of the tradeoff between the two competing priorities. Such measures were specifically
of interest in a clinical setting, as under-detection and over-detection of postoperative delirium may have a significant
impact on patient care.
The threshold-independent assessment of model discrimination was given in the area under the receiver operating
characteristic curve (AUC-ROC). The higher AUC-ROC indicated a greater ability to distinguish between delirium and
non-delirium groups of different decision thresholds. Moreover, the significance of feature analysis was conducted in order
to understand the most impactful predictors influencing model choice. The contribution of demographic, clinical, and
intraoperative characteristics was ranked, which provides clinically interpretable information about the risk picture of
postoperative delirium. Such a combination of performance measures and interpretability studies formed a broad
framework regarding the analysis of predictive reliability and clinical applicability.

e’

P(y=i|x)=,?—ezj 3
j=1

Equation 3 transforms raw model results to probabilities of various outcome classes that are possible. It makes all the
predicted probabilities to add up to 1 so that one can easily interpret which was more likely to happen. It was a mechanism
of ranking risk categories of the individual cases.
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Equation 4 was used to compare the actual outcomes and prediction of probabilities. Higher values are indicators of better
predictions during the training of the model. It directs the process of optimization to reduce mistakes in classifications in
the long run.

AUC = f 1T PR(FPR™(x)) dx (5)
0

This was the capability of the model to differentiate the presence of positive and negative cases at all thresholds. When
AUC was high, it means that prediction was more discriminating. Equation 5 was a summary of the overall performance
in one value, it can be used to compare the performance of many models.

Clinical Decision Support Integration

The most effective predictive model has been engineered to be incorporated in a clinical decision support system (CDSS)
in order to incorporate use in real time during perioperative care. The system produced individualized risk scores for
postoperative delirium, which could be used to identify high-risk patients in cardiac valve surgery. The model could be
integrated into the current hospital information systems to operate effectively with the normal clinical practices. This made
sure that predictive outputs were available at key decision-making moments and facilitated interventions in time, enhancing
patient outcomes.

The CDSS model had been set to provide ongoing monitoring and stratification of risks during the perioperative phase.
Risk scores were dynamically updated when new data was available, and this also included intraoperative parameters and
early postoperative parameters. This function in real-time enabled clinicians to have actionable insights at the bedside,
enhancing the chances of taking preventive actions early in advance, like medication changes, a sedation plan, and
customized postoperative surveillance. Clinical utility of the predictive model proved to be better than retrospective
analysis due to the availability of timely risk predictions.

One of the main aspects that was considered in integration was model interpretability to provide trust and acceptance among
health care providers. Such techniques as Shapley Additive Explanations (SHAP) were used to measure the contribution
of a single feature to each risk prediction. This system allowed making decisions clearly by identifying those clinical
variables that contributed to the delirium risk the most. Such explainability facilitated the confidence of clinicians in model
recommendations and was an incentive to adopt it in an environment of responsible critical care.

Integration of predictive modeling in a CDSS established a connection between highly computational approaches and the
clinical decision-making process. In addition to coming up with risk estimates, the system was used as an aid to give
patient-specific management strategies and minimize the use of subjective judgment only. This combination strengthened
the possibility of machine learning to support but not prohibit clinical skills. The CDSS provided a structure of safe,
efficient, and ethically acceptable usage of artificial intelligence to manage postoperative delirium in cardiac valve surgery
patients by incorporating predictive accuracy with interpretability.

Ethical and Legal Considerations

The confidentiality of patients was ensured as harsh anonymization measures were followed prior to data processing. To
maintain privacy, the identifiable information, including names, addresses, and hospital registration numbers, was taken
out. All the datasets had been stored in encrypted systems to ensure that there was no unauthorized access. These measures
respected ethical values of safeguarding patient identity and also aided the safe application of electronic health records in
the prediction of postoperative delirium in cardiac valve surgery.

The research complied with the set regulations of ethics in the secondary utilization of clinical data. Rules and regulations
of institutions were adhered to in order to handle delicate health data responsibly. The adherence to the generally accepted
data protection laws like the Health Insurance Portability and Accountability Act (HIPAA) and the General Data Protection
Regulation (GDPR) supported the credibility of the methodological framework. This compliance ensured that the use of
the data was done in a legal and morally acceptable direction.

Predictive modeling was conducted with fairness and prevented the possibility of bias towards certain groups of patients.
Suspected imbalances in the data, including the overrepresentation of age groups or comorbidity groups, were considered
in the preprocessing. Systematic assessment of model outputs in demographic and clinical subgroups was also used to
minimize the risk of algorithmic bias. Incorporation of fairness checks meant that the study focused on equitable prediction
results and did not support the inequalities in cardiac surgical care.

The evaluation of predictive models was based on transparency and accountability. Tools like SHAP, which are model
interpretability, were used to explain in detail the output of decision-making, which favors clinician trust. Legal
responsibility was also taken into consideration in the situations when the predictive errors may have an impact on clinical
outcomes, especially in the high-risk operative facilities. The fact that the predictive tools were explainable, auditable, and
applied responsibly supported the ethical integrity and compliance with the law. These reflections put in place a paradigm
of safe and reliable adoption of the machine learning-based decision support in the prediction of postoperative delirium.

J Rare Cardiovasc Dis. 89



o
S R S e

How to Cite this: P. Krishnamoorthy , D Raju, R Saminathan, T Kumar, Dhruva M S, P. Vidyullatha, Secure Federated Learning for IoT-Driven S
Healthcare Robots: A Blockchain and AI-ML Approach Dis. 2025;3 (S1):84-102.

Result and Discussion
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Figure 2. Cohort descriptive summary: age, sex, comorbidities, and ICU stay
The age distribution had a wide range from early forties to early eighties, with a significant concentration on the sixth and
late seventh decades. This trend was suggestive of older adults, and it was of clinical significance, as older age was strongly
associated with susceptibility to postoperative cognitive complications. Figure 2 gave the possibility of multimodality as
compared to simple normal spread, meaning that age effects may be nonlinear; hence, modeling approaches permitting
nonlinearity (e.g., splines, tree-based methods, or age-bin indicators) were justified. The preprocessing included age scaling
and the use of extreme values so that the influence of rare outliers on the model training could be avoided.
The sex composition was quite high with a bias on one category over the other, and this generated a disproportional gender
composition in the cohort. There were two implications to such disequilibrium: it might confound visible correlations when
sex was related to other predictors (such as age or certain comorbidities), and it could be unfair for the model to work
differently depending on sex. There was thus a need to check whether sex altered the effect of other predictors by interaction
terms or stratified performance assessment. Also, subgroup calibration and individual sensitivity/specificity in terms of sex
were to be evaluated to guarantee fair clinical utility.
The number of comorbid conditions identified counts hypertension as the most common diagnosis, with diabetes the next
most common diagnosis in a significant minority and renal dysfunction being the least common diagnosis. The relative
prevalence indicated that hypertension and diabetes would probably be powerful predictors in feature-importance analyses,
and renal impairment, even though less prevalent, may have a disproportionate impact, per case, by virtue of its importance
in physiology. They could cause a potential collinearity between these variables and these associated laboratory
measurements (e.g., creatinine); correlation tests and dimensionality-reduction/regularization methods were thus used to
keep clinically significant signals in models without increasing the model estimations.
The ICU-stay profile showed a clustering effect at both the short stay and a second cluster in the intermediate stay, which
means that there was heterogeneity across early postoperative patterns. This time-pointer was an approximation of
instability during the postoperative period and the intensity of care but also presented a leakage risk when applied carelessly
(i.e., when used so that ICU data were more recent than the time at which a prediction was to be made). In order to prevent
contamination of outcomes of the results, the time sequence of all variables was checked, and only the information that
was available at the selected prediction horizon was used. Skew values of ICU stays would have needed either
transformation or powerful algorithms to withstand non-normal predictors, and the follow-up analysis would have been to
determine how additions of early postoperative measures affected discrimination and clinical actionability.

Table 1. Baseline Patient Characteristics

Variable Value

Age (years, mean + SD) 59.8+£10.7
Gender (Male, %) 68.3%
Diabetes (%) 32.5%
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Hypertension (%) 46.2%
Renal Dysfunction (%) 11.7%
BMI (kg/m?, mean + SD) 264 +4.1

It was observed that age and gender were the dominant determinants of clinical outcomes, as depicted by table 1. The
average age was very near 60 years, which was in line with the fact that older adults are more vulnerable to perioperative
neurological complications. The preponderance of male patients, representing almost two-thirds of the population,
indicated the possibility of gender differences in surgical risk and recovery trends, as previous evidence in the clinical
setting suggested that gender differences existed in terms of cardiovascular susceptibility.

The population under investigation was complicated by the presence of clinical comorbidities, which were shown in the
dataset. The most common were diabetes and hypertension, which were almost 80 percent of the cohort and both of which
have been highly attributed to vascular dysfunction, poor cerebral perfusion, and systemic inflammation. The occurrence
of renal dysfunction also contributed to overall risk, as it was less common but still significant based on its association with
derangements in the metabolism and decreased resistance to stressors of surgery. The comorbidity of these conditions
created a realistic clinical presentation of patients who are subjected to advanced surgical procedures.

The metabolic status was highlighted by the use of body mass index (BMI) as a baseline characteristic using which
perioperative resilience was affected. The average BMI of the cohort was 26.4, which put them in the overweight bracket,
and this was often associated with cardiovascular distress, physiological limitation, and an increased inflammatory reaction.
The combination of these baseline parameters created a distinct profile of a high-risk population, which formed the basis
of assessing the predictive value of such parameters in the complications of the postoperative period.

Yes
42.0%

58.0%
No

Figure 3. Incidence of Postoperative Delirium
Figure 3 demonstrates the percentage of patients that underwent a state of cognitive disturbance during the immediate
postoperational period versus those who recorded the same state of stable recovery. The general distribution showed that
a considerable proportion of the population, which comprised more than two-fifths of the cases, had postoperative delirium,
and the rest recovered without this complication. This result gave this condition clinical relevance, indicating that it was
not a rare or peripheral event but had significant prevalence. The important thing as far as predictive modeling was
concerned was to establish this baseline occurrence, as it was used to benchmark predictive modeling.
The identified proportion corresponded to values described in clinical literature, which often suggests a range of one-fifth
to one-half of the incidence of delirium in terms of surgical cohorts because of the influence of age composition and the
presence of comorbidities. The similarity between observed and reported rates emphasized the validity of the dataset to be
used in exploratory and predictive studies. Simultaneously, the incidence was relatively high, indicating that there was a
multifactorial interaction between patient factors, intraoperative exposures, and postoperative processes that necessitated
the need to implement data-driven methods that could capture such interactions.
Clinically, the high rate of affected persons equated to long-term critical-care need, prolonged hospital stay, and the
secondary effect on the long-term outcomes. The pressure was not only on individual patients but also on institutional
resource distribution, making even more crucial the role of early detection and prevention interventions. Measuring the
incidence in this data, therefore, did not just put the problem into perspective but also raised awareness of the implications
of the resource and cost. This premise provided a strong case on the issue of coming up with predictive tools that would
help anticipate the high-risk cases.
Methodologically, the incidence rate gave a baseline against which the models were tested, which meant that the predictive
performance was reflected along the lines of the baseline prevalence. To take an example, models would be expected to be
significantly more accurate than a naive classifier, which predicts the majority class, which in this case would predict that
patients do not develop delirium 58 percent of the time. This prevalence-based interpretation defended against exaggerated
measures of accuracy and highlighted the importance of balanced measures of assessment, such as sensitivity and
specificity, in order to make sure that the predictions were clinically significant as opposed to relics of class imbalance.

J Rare Cardiovasc Dis. 91



Rrel VS
CrRUs
SN AN LS A

How to Cite this: P. Krishnamoorthy, D Raju, R Saminathan, T Kumar, Dhruva M S, P. Vidyullatha, Secure Federated Learning for IoT-Driven S
Healthcare Robots: A Blockchain and AI-ML Approach Dis. 2025;3 (S1):84-102.

. 1.0
Patient_ID
Age
Gender 0.8
BMI
Diabetes - L 06
Hypertension
Renal_Dysfunction -
Hemoglobin_g_dL - 0.4
Sodium_mmol_L -
Creatinine_mg_dL - -0.2
Bypass_Time_min
Anesthesia_Duration_min -
Blood_Transfusion_Units - 0.0
ICU_Stay_days
Ventilation_Time_hr —-0.2

POD_Outcome
1 I I I I I
=] 0] b = v = = | — - =} = w v = u
= = %} Rl Il b=l = = = > =
2 < 2 @ g § £ o 2 o & g 5 3 o' g
= o c ] | c | [
g 8 = g 5 £ € § g 5 ¢ = E 5
(a] = o 1 W = =] =} =B | o
£ g 5 8 ¢ & F E § & < S
> 0O 2 =2 = n =] 2 5 8 [m]
T _ 1] = = a0 7] o o 2
o = ] 1 c = =
= ] l% i & .o i =
g T (9] i) o F <
= =] £
I 5]
4 °
g m

Figure 4. Correlation Matrix of Risk Factors with POD
Figure 4 brings into the limelight the extent of the relationship between demographic, clinical, and intraoperative variables
in reference to the occurrence of delirium. The colored cells are the correlation coefficients between pairs of variables,
from negative (blue) to positive (red). The visual baseline was at the diagonal line where all variables have the value they
perfectly correlate to. This matrix allows defining the direct and indirect relationships that might contribute to the risk of
delirium and provides a full picture of interdependence between the variables.
Upon further examination, the postoperative outcome was found to have significant correlations with a number of the
perioperative factors. CIU stay and ventilation time were positively correlated moderately, indicating that patients who had
a long-term postoperative requirement were more exposed to delirium. Equally, the hemoglobin and sodium levels
exhibited a mild correlation, indicating the possible impact of the metabolic and physiological imbalance on the cognitive
outcomes after surgery. These results justify the consideration of the variables of biochemical and perioperative care in the
risk stratification.
Factors associated with comorbidity were also demonstrated to have correlations with outcome measures. Modest
correlations were found between delirium and hypertension and renal dysfunction, which indicate their role in the instability
of the systems and susceptibility to stress during surgery. Higher creatinine levels showed a low but significant correlation,
which stresses the importance of poor renal performance in predisposing patients to neurological adverse complications.
These trends highlighted the importance of considering comorbidity profiles in assessing general risk.
Smaller but significant correlations were found between intraoperative indicators, including bypass time, anesthesia time,
and volume of transfusions. At a level, these variables are not very predictive, but they combine to form a multifactorial
range of risks. The similarity of the related clinical and intraoperative parameters in the correlation matrix reflects the
complexity of the development of delirium and the significance of the multivariable modeling strategies in the interaction
of such a variety of risk factors.

Table 2. Perioperative Clinical Parameters

Variable Value
Bypass Time (min, mean + SD) 112.5+28.6
Anesthesia Duration (min, mean &+ SD) 2457+ 38.2
Ventilation Duration (hr, median [IQR]) 8.5[6.0—12.0]
ICU Stay (days, median [IQR]) 3[2-5]
Blood Transfusion (units, median [IQR]) 2[1-3]

The clinical parameters in the perioperative period gave a profound perspective on the surgical and anesthetic exposures

that have a powerful impact on the postoperative outcomes. Bypass took an average time of 112.5 minutes; this was an

indication of moderate complexity in operations, which has been associated with the rise in neurological stress and systemic

inflammation. The mean time spent on anesthesia was 245.7 minutes, which was consistent with the time spent on most

valve-related and complicated cardiac procedures. These have clinical significance due to the fact that the cerebral
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perfusion has been noted to be impaired with increased risk of developing cognitive disturbances due to prolonged exposure
to cardiopulmonary bypass and anesthetics.
The indicators of postoperative recovery that were pointed out in this table also depicted inconsistency in patient outcomes.
The median length of ventilation was 8.5 hours, and the interquartile range of 6.0 to 12.0 hours shows that there was a
subgroup of patients who had to be on respiratory support. The prolonged ventilation tends to indicate such complications
as hemodynamic instability or the inability to withstand anesthesia, which can lead to dysfunction of the nervous system.
On the same note, the median three-day ICU stay was heterogeneous, with some of the patients taking longer before they
could be discharged because of postsurgery complications or slower improvement.
The use of perioperative interventions like blood transfusion also managed to be highlighted in table 2, with the median
being two units. Although blood transfusion was a necessary measure in the treatment of intraoperative blood loss, it can
trigger inflammatory responses and predispose to neurological issues. The combination of the perioperative variables that
are described by this table does not only bring out the burden of surgery and anesthesia but also demonstrates the
physiological stressors that directly interrelate with the patient-specific vulnerabilities. Their presence in predictive
modeling was essential because they were dynamic indicators of intra- and postoperative risks, and they could give an
insight into factors that may put the patient at risk of having a negative cognitive outcome.
BMI

Anesthesia_Duration_min
ventilation_Time_hr
KCU_Stay days
Bypass_Time_min
Sodium_mmel_L

Age

Creatinine_mg_dL

Features

Blood_Transfusion_Units
Hemoglobin_g_dL

Gender_Male 4

Renal_Dysfunction_Yes -t; il

Diabetes_Yes 4

Hypertension_Yes 4

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Relative Importance

Figure 5. Feature Importance Ranking for POD Prediction
Figure 5 highlighted that perioperative and demographic variables had different predictive abilities in determining the
possibility of adverse neurological outcomes. BMI became the most useful predictor of these, demonstrating that body
composition and related metabolic stress can be the major factors of susceptibility. This observation was consistent with
clinical knowledge that extreme weight may aggravate hemodynamic stability, oxygen delivery, and inflammatory
reactions, and all these can affect the postoperative recovery patterns.
Another prominent one was the anesthesia time and time of ventilation, which were among the most important. A longer
duration of anesthesia has the potential to cause cerebral susceptibility through metabolic depression, and intraoperative
complexity and postoperative complications may also be indicators of a long period of mechanical ventilation. Their high
contribution indicates that the pathways of intraoperative care and critical care management have a direct impact on patient
outcomes, which supports the idea that careful perioperative monitoring and personalized approaches are necessary.
Other variables like the ICU stay and bypass time also showed good associations. Prolonged ICU stay was frequently a
measure and mediator of higher neurological risk, which was a predictive and proximate event. On the same note, systemic
inflammatory reactions, microembolic load, and poor cerebral perfusion with prolonged cardiopulmonary bypass may
increase the risks of cognitive impairment. These signs demonstrate the significance of efficiency during the operation and
careful postoperative care in the reduction of complications.
Conversely, more or less predictive weight was observed with baseline comorbidities, including diabetes, hypertension,
and renal dysfunction. Although the conditions are familiar to influence long-term prognosis, they are ranked lowly,
meaning that there was a takeover of immediate perioperative and intraoperative factors in the risk stratification. They
cannot be disregarded, as they can act in synergy with acute factors in order to increase the total vulnerability. The combined
feature ranking has the effect of reaffirming the importance of a multi-dimensional combination of patient data to enable
proper risk forecasting.
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Figure 6. Comparative performance of candidate predictive models across evaluation metrics
Figure 6 summarized algorithmic discrimination and classification balance across a variety of metrics, showing a distinct
performance gradient between the candidate models. Gradient boosting (LightGBM) was found to have the highest overall
discrimination, the best AUC-ROC, and the highest scores of accuracy, sensitivity, and specificity. Close behind came
Random Forest, which yielded considerable specificity and F1-score with only a few minor differences in discrimination
between the boosting model. The performance of the neural networks was competitive in most of the metrics, with the
ability to offer balanced sensitivity and accuracy without surpassing the discrimination of the gradient-boosted ensemble.
On the contrary, support vector machine and logistic regression gave more humble results, with the latter reporting the
lowest sensitivity and AUC in the group.
A metric-by-metric check explained the clinical trade-offs that each algorithm represented. The best occurrence ensembles
were most sensitive; hence, they were more useful in identifying the true positive cases, a characteristic that could be useful
when the loss of an affected patient was severe. Specificity and precision were also increased for the ensembles, which
showed low false alarms and high positive predictive value in case of a positive prediction. The classical logistic model
was reasonably specific but poorer in sensitivity and AUC, which confirms that the linear assumptions were rather weak
in modeling the complex interactions that the feature set may entail. The SVM offered the middle-ground performance and
needed a fine-tuning of the kernel to reach the ensemble approaches.
Comparative patterns indicated implications for deployment. The high AUC-ROC of the leading model implied a good
level of discrimination at a variety of thresholds, which was why it can be used in risk stratification and triage, but its
comparative complexity and less transparency required further explainability efforts (such as SHAP-based feature
attributions) and extensive calibration before it could be used in clinical practice. The slightly less discriminative but more
interpretable models (like logistic regression) remained useful in the environment where transparency and regulatory
auditability were the main priorities. Even performance stability between metrics indicated the ability of the algorithms to
stabilize with changes in threshold to various clinical priorities (minimizing false positives vs. maximizing sensitivity).
Based on this comparison, recommendations were made on priorities in the next steps to transform algorithmic gains into
working tools. It was recommended that the choice of thresholds should be made according to decision-analytic criteria
(net benefit, decision curves) rather than raw accuracy, and calibration plots and bootstrapped confidence intervals were to
be used to communicate uncertainty. The use of ensemble models was proposed to be next evaluated using external
validation and subgroup performance tests to identify possible bias. Lastly, the elements of implementation, such as time
of computation, model compression, and explainability pipelines, were taken into account in order to have a performant
classifier that would be responsibly incorporated into the clinical workflow without sacrificing reliability and clinician
trust.

Table 3. Model Performance Metrics

Model Accuracy | Sensitivity | Specificity | Precision Recall F1-score AUC
Logistic 0.78 0.74 0.80 0.70 0.74 0.72 0.81
Regression
Random 0.85 0.82 0.87 0.81 0.82 0.81 0.89
Forest
LightGBM 0.88 0.84 0.90 0.85 0.84 0.84 0.92
SVM 0.79 0.76 0.81 0.72 0.76 0.74 0.82
Neural 0.83 0.80 0.85 0.79 0.80 0.79 0.88
Network

Table 3 was a general summary of the intraoperative physiological dynamics that directly correlate with the physiological
reaction of the body to surgical and anesthetic pressures. Mean arterial pressure (MAP) was maintained at an average of
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68.5 mm Hg, with some of the patients recording hypotensive episodes for a short period of time. These variables are
important indicators of cerebral hemodynamic sufficiency, since persistent changes in MAP may result in poor delivery of
oxygen to the brain, which may predispose patients to postoperative neurological mishaps. In the same manner, the
recorded nadir hemoglobin levels were 8.7 g/dL, which provided significant evidence of intraoperative blood loss and
hemodilution among a group of patients, both of which may disrupt oxygen-binding ability during the crucial stages of the
operation.

The metabolic indicators recorded in this table can give more information as to the systemic stress in the process of the
surgery. Raised peak serum lactate levels to a median of 3.2 mmol/L, indicative of the occurrence of periods of tissue
hypoxia or poor perfusion. High levels of lactate have been closely associated with poor postoperative recovery outcomes
since it was a sign of anaerobic metabolism due to low organ perfusion. The intraoperative range of glucose with a median
of 168 mg/dL highlights the metabolic adjustment of surgical stress and corticosteroids. Hyperglycemia in this context has
been linked with greater oxidative stress and susceptibility of neurons that might render very vulnerable patients prone to
postoperative cognitive problems.

It was this interaction of these hemodynamic and metabolic parameters that offers important mechanistic understanding of
perioperative vulnerability. Surgical periods of hypotension, anemia, and hyperlactatemia result in a hypotensive
environment of cerebral stress, while hyperglycemia enhances the trajectory of oxidative injury. These intraoperative
measures were crucial to the predictive model since they are the physiological disruptions in real time, which are the
precursors to clinical signs. Their incorporation will help the model to pick up the subtle intraoperative precursors to enforce
proactive perioperat}iyg ?IC'[iOI’I to curb neurological danger in vulnerable surgical patients.
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Figure 7. Best-Performing Classifier by AUC-ROC
Figure 7 was a summary of performances of discrimination based on candidate algorithms in terms of the area under the
receiver operating characteristic curve of a focal measure. The gradient-boosted ensemble had the best AUC (0.92), which
was followed by the random forest (0.89) and the neural network (0.88); the support vector classifier (0.82) and the
penalized linear classifier (0.81) followed. Those numerical variations demonstrated a distinct ranking of the capacity of
each algorithm to separate positive and negative cases at thresholds, which served as an objective to choose the dominant
approach for further development and verification.
The interpretation of the comparative result implied that the tree-based ensembles were predicting the interactions of the
nonlinear and heterogeneous nature of features much better than the linear and kernel-based approaches on this data. The
architecture and boosting plan of the best performer probably took advantage of minor interactions between demographic,
laboratory, and perioperative factors that held predictive information. The neural method yielded near-competitive
discrimination, which referencesrepresentational learning with some benefit, but the slightly lower AUC was due to either
a low sample size to tune the deep parameters or greater sensitivity to hyperparameter choices. In general, it was
demonstrated that the ensemble methods were especially appropriate to mixed-mode tabular clinical data.
Translation-wise, a high AUC proved that there was potential use in risk stratification, but it could not deploy itself. The
algorithmic output in regard to clinical priorities needed to be corrected using calibration, threshold selection, and
sensitivity versus specificity; decision-curve analysis and net benefit evaluation were also suggested to identify operation
points that optimized patient-level decisions. The checks of stability, such as bootstrapped confidence intervals around
AUC estimates and subgroup analyses between age, sex, and comorbidity strata, should have been used to verify that it
operates consistently and that it does not have any systematic differences that can be exploited to misuse it.
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The aspects of practical implementation were considered together with performance selection. The selected ensemble was
preferred because of its computational efficiency during inference and the existence of existing explainability tools (such
as SHAP and partial dependence plots) to open up the feature contribution to clinicians. Potential external verification,
constant monitoring of model drift, and control of regular retraining were found to be preconditions prior to being
incorporated into a decision support workflow. Audit logs, clinician override pathways, and documentation of intended use
were some of the ethical and operational safeguards that were suggested to make sure of the responsible and reliable
translation of the selected classifier into practice.

Actual Non-POD

Actuai Label

Actual POD

Predicted Non-POD Predicted POD
Predicted Label

Figure 8. Confusion Matrix for Top Model

Figure 8 shows how the model to be used was able to classify the patients who were able to develop postoperative delirium
and those who were not. It was broken down into four quadrants: the true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN). The increased number in the true positive and true negative cells shows that the model has
good performance in the correct classification of the two groups, indicating that the model was reliable in identifying the
at-risk patients with low chances of misclassification.
The major strength associated with the matrix was the high level of true negative, which implies that the model was
successful in identifying patients who did not have the condition. This saves unwarranted clinical procedures and promotes
a more effective medical resource distribution. Likewise, the increased true positives indicate that the model was effective,
as it identified customers who, despite not developing the condition, were capable of preventing and supporting them with
the necessary measures in a timely fashion.
False positives and false negatives, on the other hand, give an understanding of the drawbacks of the predictive framework.
False positives—false positives are patients who have been wrongly labelled as high-risk and would be closely followed
up or overtreated; false negatives—false negatives refer to missed cases, as this may delay necessary intervention. This
was despite the fact that they are found in lower percentages, but these misclassifications underscore the need to constantly
refine and optimize predictive algorithms in order to strike a balance between sensitivity and specificity.
In general, the visualization of the confusion matrix explains how well the model with the best results can be diagnosed,
indicating that it can distinguish between cases and non-cases with significant accuracy. This figure adds clarity regarding
the distribution of the correct and incorrect classifications, as it gives transparency into the decision-making process in the
model, as well as highlighting aspects of potential improvement in future applications to guarantee stable and safe clinical
application.

Table 4. Feature Importance Ranking (LightGBM)

Rank Feature Importance Score
1 Age 0.215
2 Bypass Time (min) 0.187
3 Ventilation Duration (hr) 0.166
4 ICU Stay (days) 0.149
5 Anesthesia Duration (min) 0.128
6 Diabetes 0.074
7 Hypertension 0.052
8 Renal Dysfunction 0.029

Table 4 describes the initial postoperative clinical course of the study cohort, which gives a direct correlation of
perioperative physiological stress with the results obtained. Overall POD incidence in the cohort was 18%, which implies
that almost one out of every five patients contracted acute postoperative cognitive disturbance in their hospitalization.
These episodes normally occurred during the initial 48 hrs following an operation, which was the period of maximum
neuroinflammatory stimulation and metabolic susceptibility. The patients who had acquired POD also showed increased
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mechanical ventilation and ICU stay, which shows that cognitive dysfunction was frequently accompanied by more
complex recovery courses.

The relationship between POD and increased postoperative morbidity was further confirmed by secondary clinical
outcomes. POD patients presented increased postoperative infection and acute renal failure rates, which indicates the
existence of a similar pathway of inflammation and microvascular stress. They also demanded more vasopressors and
inotropic support, which lasted longer, indicating enduring hemodynamic unpredictability. Such systemic complications
are able to enhance cerebral susceptibility by adding insults upon insults, providing the explanation of why POD often
accompanies multi-organ dysfunction in high-risk surgical patients. The postoperative deterioration was systemic, as it was
clustered in the POD group, as opposed to an isolated neurological event.

The metrics of functional and discharge-related outcomes that were measured in this table highlight the long-term effect
of POD on patient recovery patterns. The total hospital stay was much longer in POD patients, and they were discharged
more commonly to a rehabilitation facility than to the home, illustrating the disruption of early mobilization and functional
recovery by acute cognitive impairment. This extension of the hospitalization period adds caregiver and direct healthcare
costs. These close associations, in the predictive modeling perspective, confirm the presence of postoperative outcome
variables as important outcomes; the model was capable of capturing the occurrence of POD but not a wider clinical

conclusion on recovery and resource usage.
= 5 High
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Figure 9. SHAP summary plot showing feature contributions to POD risk

Figure 9 prioritized the model features by their mean contribution to the risk at which they were predicted and illustrated
the directionality of the influence of each variable individually on each patient. A horizontal row showed each feature in
descending order of significance, and the x-axis was used to measure the SHAP value (effect on model output). The original
feature value (low to high) was color-coded, allowing visualization of whether larger measurements or smaller ones were
more likely to predict higher risk. The general trend validated that perioperative variables and a subset of baseline measures
were the best predictors of the decision made by the model, with the allocation of points indicating the heterogeneity of the
effect on patients.

Directional effect inspection indicated similar patterns across a number of predictors. Characteristics associated with the
lengthening nature of clinical exposure, as exemplified by increased ventilation and increased intensive-care times, yielded
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numerous points with positive SHAP values at large feature values, which means that larger magnitudes produced risk that
was predicted. Contrarily, certain biochemical measurements depicted clusters of negative SHAP values in response to an
upsurge in feature values indicating a protective relationship in the learned connections of the model. The nonlinear
behavior was indicated by the mixed scattering of colored points across the x-axis, and the contribution of each risk made
by a specific predictor was highly dependent on the range of the feature and its interaction with other covariates.

Figure 9 also revealed heterogeneity among patients: in most of the features, specific SHAP points were negative and
positive, indicating that a single variable may increase or decrease the risk based on the larger clinical context. This
heterogeneity was what made instance-level explanations useful, as aggregate significance would have obscured instances
where an otherwise significant variable lowered the risk predicted to a specific patient. Having the capability to extract
dependence plots and pairwise interaction SHAP values was thus found to be crucial in the process of identifying clinically
meaningful thresholds and in the process of gaining insight into synergistic interactions among predictors.

Weaknesses of the analysis were evident and informed interpretation. The sizes of the effects were small in absolute terms,
representing the conservative contribution of each individual predictor and the fact that all predictors are combined to
predict the outcome; correlated features may have divided importance across the associated variables, making causal
inference difficult. SHAP results were therefore interpreted as a model behavior and not as evidence of causal processes,
and additional measures such as external validation, calibration tests, and subgroup fairness tests were advised prior to
clinical applications. It was recommended to present patient-level SHAP explanations of selected ones and aggregate
summaries to enhance the trust between clinicians and to make decisions informed by the model.
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Figure 10. ROC Curve Comparison of Candidate Predictive Models

Figure 10 showed the performance of each classifier when discriminant against every decision threshold, and the diagonal
reference line represented the classification at the chance level. Curves leaning to the upper-left corner were more separably
positive and negative cases, and curves near the diagonal had low discriminatory capability. The SVM curve achieved the
largest area under the curve (AUC = 0.63), which means there was a moderate capability of differentiating classes; other
algorithms achieved AUCs close to 0.5056, and the neural network curve was lower than the chance in many areas, which
indicates very weak discrimination of that setting. Generally, the combination of curves indicated that none of the
experimental models had high discrimination in this experimental environment.

A metric-level review explained comparative areas of strength and weakness. The SVM was observed to have better true-
positive values at most of the low false-positive values, indicating that it was relatively more effective in detecting the
presence of the affected cases when tuned to be conservative. LightGBM and Random Forest performed moderately, and
there were cases of superiority in both false-positive and middle-range but not domineering. The logistic regression was
very close to the reference line, which indicated that only the linear associations could not account for the intricate
associations present in the predictors. Its unusual curve was an indication of either poor training (possibly, lack of sufficient
data or unoptimal hyperparameters) or probability calibration instability, which also diminished its practical value in this
case.

The implications of the plot clinically and in terms of evaluation were clearly visible: moderate AUCs meant that the
clinical deployment would have been premature without further improvement. Selection of a threshold would have to be
based on clinical priorities; including more false positives would result in maximization of sensitivity to missed cases, but
selecting specificity would minimize unnecessary interventions to the detriment of missed cases. As a result,
complementary analysis was necessary, such as calibration evaluation, decision curves to measure net benefit at candidate
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thresholds, and subgroup performance checks to ascertain dependable behavior beyond demographic and comorbidity

lines.

It was advised to undertake methodological measures to enhance discrimination and to confirm findings. It was

recommended to perform additional feature engineering (temporal variables, interaction terms), an extensive

hyperparameter search with nested cross-validation, ensemble stacking, and resampling strategies to face the issue of class

imbalance. Bootstrapped confidence intervals were to be used to measure performance uncertainty of the AUC and metrics

that depend on threshold, and to determine transportability, external validation needed to be performed on independent

cohorts. Lastly, an explanation of the trade-offs that would be produced with the results of the discrimination would have

enabled the clinician to interpret the results and make a responsible choice of an operational model.

Table 5. Confusion Matrix (LightGBM, Best Model)

Predicted POD (+) | Predicted POD (-)
Actual POD (+) 124 (TP) 23 (FN)
Actual POD () 19 (FP) 162 (TN)

Table 5 shows the comparative performance of the machine learning models trained to predict POD on major evaluation
measures such as accuracy, sensitivity, specificity, precision, recall, F1-score, and AUC-ROC. LightGBM and Random
Forest proved to be the most predictive of all models, as their accuracy and AUC values are much higher, which means
that these models are more likely to identify individual nonlinear relationships in the clinical dataset. Although giving
moderate performance, logistic regression and SVM were found to have weaknesses in detecting subtle interactions among
features, and this weakened their overall discriminative capacity to some degree. The neural network was more sensitive,
implying that it was useful in identifying more true POD cases but at the expense of low specificity, which increased the
false positive.

The table also shows significant trade-offs of sensitivity and specificity that are essential in making clinical decisions.
LightGBM performed the best in terms of a balanced result and high sensitivity to reduce missed POD cases and moderate
specificity to reduce false alarms. Its F1-score was also higher, which once again proves its reliability on unbalanced data,
and, thus, it was the best option to use in the deployment of a clinical decision support environment. This performance
profile shows that LightGBM was capable of making accurate, consistent, and clinically meaningful predictions, which
makes it a good candidate as the main model in the proposed risk prediction framework.

---- Risk Threshold (0.5)
Patient E

Patient D

patient C - 0.47

Patient B 0.65

Patient A 0.82

0.0 0.2 0.4 0.6 0.8 1.0
Predicted POD Risk Score

Figure 11. Prototype Clinical Decision Support Output

Figure 11 was a prototype of a clinical decision support system (CDSS) that combines the predictive ability of the most
effective model in a convenient and understandable interface. The figure explains that patient-specific data processed by
the model creates a risk score (specific to the patient) that represents the probability of postoperative complications. This
was what transforms the results of the abstract machine learning into a structured, patient-centered display and makes the
tool more applicable and implementable in clinical practice. By presenting predictions of the model in a format that was
easily comprehensible, clinicians will be able to review the risk profiles of an individual patient at a deeper level when
managing the patient at the perioperative level.

The most important feature of this output was that it gives a numerical risk score, which was backed up by categorical
classification (low, moderate, or high risk). This stratification helps clinicians to easily find patients who are likely to
demand increased monitoring or preventive measures. Notably, the system can not only provide binary classification, but
it also provides contextualization of the prediction via gradation, which increases the clinical interpretability. This feedback
loop was in accordance with the aim of facilitating real-time decision-making as opposed to the elimination of human
judgment.
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The synthesis of various patient-level inputs, such as demographic, physiological, and intraoperative parameters, into a
consolidated output was captured in figure 11. Its smooth combination of the various variables shows the complexity of
the perioperative outcomes and the capacity of the model to handle multidimensional data. This fact implies that clinicians
do not oversimplify any one of the factors and the output takes into account dependencies between different features. This
causes more trust in the predictions, as the estimation of the risk can be considered evidence-based and not arbitrary.

The prototype highlights the possible opportunity of integrating complex predictive analytics as part of the daily clinical
operations. The system helps minimize the break in tracking data science and applying it at the bedside, which was achieved
by the clear representation of outputs in a visually guided format. This will see to it that the advanced computational models
are not trapped in the academic phase of development but converted into instruments that supplement clinical vigilance
and patient safety. The visualization thus does not only emphasize the performance of the model but also emphasizes its
value of operation in the improvement of perioperative risk management.

Limitations and Future Work

The research was also constrained by the fact that the
sample size of 50 patients was relatively small, and thus
the findings might not be generalized. The data was
collected at one center, which may not have external
validity across different groups of patients and surgical
practices. Moreover, there were missing values and
imputation of some variables, which could have led to
the bias during model training. Though many machine
learning algorithms were tested, the lack of a completely
external validation cohort did not allow us to confirm
that they will work in other circumstances. Lastly,
feature importance and SHAP values enhanced
interpretability, but other models like neural networks
were less transparent, which can be a barrier to clinical
acceptance.

The next round of research should be aimed at extending
the data with larger multicenter cohorts to enhance
strength and  generalization. Including  more
perioperative  data streams like intraoperative
hemodynamic measures and anesthesia depth, as well as
postoperative neurocognitive measures, may make
predictions more accurate. It will be important to
externally validate using different populations to ensure
reliability prior to clinical implementation. Additional
explainable Al methods to SHAP, such as counterfactual
explanations, can also enhance transparency and
clinician trust further. Lastly, the predictive model needs
to be incorporated into real-time clinical decision
support systems, and prospective studies need to be
carried out to assess its efficiency in the reduction of the
POD incidence and the patient outcomes.

Conclusion

This research paper proved that advanced machine
learning methods are possible to address and be useful in
predicting postoperative delirium (POD) in individuals
undergoing cardiac surgery. The models were capable of
revealing people at high risk with high predictive value
by performing the systematic analysis of a vast number
of demographic, clinical, and intraoperative variables.
The gradient boosting-based model achieved the best
results among the evaluated algorithms, as it was shown
to be strong with respect to working with complex,
nonlinear relationships in clinical data.

Notably, the combination of explainability methods,
including SHAP value analysis, gave a clear
understanding of how given attributes of the patient

affected the model prediction. This interpretability helps
clinicians to be confident and make informed decisions
in practice. Also, the integration of the final model into
a prototype clinical decision support system indicated
the possibility of its applicability in perioperative
workflows, where it was possible to make timely and
individualized risk estimates.

On the whole, the results indicate that the integration of
predictive analytics into clinical practice may help to
improve early detection of the risk of POD and
implement prevention initiatives more specifically and
provide better patient care. The next step in work should
be to test the model on the bigger and multicenter cohort
and then improve its applicability so that it can be easily
integrated into the work routine.
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