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INTRODUCTION 
Postoperative delirium (POD) refers to a pervasive and 

serious postoperative complication, especially after 

cardiac surgery (valve replacement or repair) [1]. 

Incidences of POD have been reported to range between 

20 and 50 percent based on the age of patients, 

comorbidities, and factors during surgery [2]. POD was 

epitomized by acute cognitive impairments, 

disorganized cognition, and changeable levels of 

consciousness, and hence, has a drastic impact on 

postoperative healing [3]. Clinical research has always 

demonstrated that POD was linked with extended 

intensive care unit (ICU) stays, increased hospital 

readmission, high healthcare expenses, and high short- 

and long-term mortality [4]. Its pathophysiology was a 

multifactorial phenomenon that involves 

neuroinflammation, cerebral perfusion impairment, and 

anesthetic effects; the selection of patients at high risk 

prior to surgery was a vital issue [5]. Since the 

occurrence of postoperative delirium was high among 

cardiac surgery patients, much effort has been put into 

the development of clinical tools to identify the condition 

early on and to risk stratify patients [6]. Such tools are 
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Abstract:    Postoperative delirium (POD) was a common critical issue that occurs after 

cardiac operations and was related to high morbidity, the length of stay, and high hospital 

expenditures. Early detection of the risk of POD would allow preventive measures to be taken 

in time, and patient outcomes would be optimized. In this research, a well-formatted dataset 

with the following variables demographic, clinical, and perioperative was used to create and 

test various machine learning models to predict PODs. Some of the variables that were 

included in the dataset were age, bypass time, time on ventilation, comorbidities, and 

postoperative indicators of recovery. The most influential predictors that would be 

contributing to the risk of POD were selected after extensive preprocessing. An internal cross-

validation and independent external test cohort were used to train and test various machine 

learning algorithms such as the logistic regression, random forest, light gradient boosting 

machine (LightGBM), support vector machine (SVM), and a neural network. The 

performance measures used were accuracy, sensitivity, specificity, precision, recall, F1-score, 

and area under the receiver operating characteristic curve (AUC-ROC). The gradient 

boosting-based model has proven to be the best predictor of the company, with the highest 

AUC and balanced results among all criteria. Techniques of explainability based on SHAP 

values provided also showed significant clinical characteristics influencing individual 

predictions, thus improving interpretability and clinical significance. The last model was 

incorporated into a prototype clinical decision support system to provide patient-specific POD 

risk scores at the point of care. This strategy brings up the possibility of data-driven predictive 

analytics to assist clinicians in risk stratification and personalized perioperative procedures, 

ultimately contributing to the alleviation of POD and increased patient safety. 
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based on standardized screening and clinical 

observations [7]. Although they are helpful in the 

diagnosis of POD once it was diagnosed, they have low 

prediction potential in the preoperative or intraoperative 

stages [8]. Trendy risk scores tend to include simple 

demographic and clinical factors but have no ability to 

reflect nonlinear correlations among risk elements [9]. 

Consequently, their predictive accuracy was not high, 

and sensitivity and specificity are frequently not 

sufficient to be used in a clinical way [10]. 

Nevertheless, the weaknesses of standard risk scores 

point to more detailed data sources, and electronic health 

records have become an all-inclusive medium of 

recording perioperative data [11]. EHR allows clinical 

patterns and other risk predictors of complications, 

including POD, to be identified with large-scale 

retrospective analyses in cardiac surgery [12]. 

Nevertheless, there are difficulties, such as the 

heterogeneity of data, absence of values, and the 

necessity to have standardized data processing across 

organizations [13]. Irrespective of these shortcomings, 

EHR offers an excellent base to build predictive models, 

and multiple data modalities can be integrated to improve 

outcome forecasting [14]. The increased access to 

organized and unstructured EHR data has opened the 

doors to the more sophisticated methods of computation, 

with machine learning being a promising avenue of 

discovering the latent patterns and forecasting clinical 

outcomes with greater precision [15]. ML models have 

been used in perioperative care to predict complications, 

including acute kidney injury, long-term mechanical 

ventilation, and surgical site infection [16]. In contrast to 

traditional regression-based methods, ML algorithms 

have the ability to learn in a high-dimensional and 

adaptive way, enhancing prediction quality and 

reliability [17]. 

Random Forests, Gradient Boosting Machines, and 

Neural Networks are a few examples of the models used 

in predicting mortality, ICU stay, and neurological 

complications in cardiac surgery [18]. They are 

especially effective at predicting POD due to their ability 

to handle large volumes of both structured and 

unstructured data provided by EHR and engage many 

factors interacting in complex manners [19]. In order to 

achieve the maximum benefit of such machine learning 

models, it was necessary that the raw clinical data be 

carefully engineered into meaningful predictors of 

postoperative delirium [20]. Logistic regression was 

interpretable and can have problems with nonlinear 

patterns [21]. Random Forests and Gradient Boosting 

Machines (e.g., XGBoost, LightGBM) are simpler to use 

but provide higher accuracy of predictions and ranking 

of feature importance [22]. Support Vector Machines are 

useful in high-dimensional data but have to be tuned on 

parameters [23]. Neural networks have been shown to be 

effective at modeling complex interactions, but these 

have been criticized as being a black box [24]. In 

healthcare prediction, comparative studies have always 

identified a trade-off between the accuracy of a model 

and its interpretability, and often single classifiers are 

outperformed by ensemble methods [25]. When the 

features of interest are identified, various machine 

learning algorithms can be compared, each offering its 

own advantages and disadvantages to healthcare 

prediction problems [26]. 

CDSS can also provide real-time estimates of 

postoperative complication risks, which in cardiac 

surgery allow implementing early interventions and 

individual management approaches [27]. The usefulness 

of CDSS was that it helps to close the gap between 

complicated machine learning models and clinical 

applications [28]. An effective implementation involves 

making the right predictions as well as having the right 

intuitive interfaces, interpretability, and integration with 

the existing hospital information systems [29]. Research 

has proven that CDSS improves patient safety, 

minimizes medical errors, and improves postoperative 

outcomes [30]. Nonetheless, there are still difficulties in 

how to be transparent with models, reduce alert fatigue, 

and keep clinician confidence [31]. The most precise 

models do not have a clinical impact unless they are 

incorporated into decision support systems, which 

convert predictions into insights that can be taken into 

practice by healthcare practitioners [32]. The key factors 

are patient privacy and informed consent and adherence 

to data protection laws, including HIPAA and GDPR 

[33]. Moreover, trained ML models can create biased 

predictions and maintain healthcare disparities due to 

bias in the model, whether based on imbalanced datasets 

or on unrepresentative populations [34]. It was also 

necessary to be transparent and explainable to make 

predictive outputs reliable to both clinicians and patients 

[35]. The aspect of legal responsibility regarding wrong 

predictions poses other issues, especially in a high-stakes 

scenario like cardiac surgery [36]. The solution to these 

problems lies in strict validation, open reporting, and 

development of ethical frameworks that can deliver a 

balance in innovation and patient safety [37]. These 

ethical and legal issues are essential in POD prediction 

because of the need to have safe, fair, and clinically 

acceptable models [38]. 

Research Gap 

The existing strategies of predicting postoperative 

delirium during cardiac surgery are not sufficient 

because the conventional screening instruments lack 

accuracy and have no ability to identify the intricate 

interaction among risk factors. Electronic health records 

are not used to the fullest to come up with advanced 

predictive models, despite offering huge volumes of 

perioperative information. Machine learning has 

demonstrated effectiveness in the prediction of the 

outcome, but there are not many studies about the 

specific problem of postoperative delirium in cardiac 

valve surgery. The comparative analysis of algorithms, 

the effective feature engineering, and its implementation 

into clinical decision support systems are seldom 

discussed. The presence of such ethical dilemmas as bias, 

transparency, and accountability was another indicator of 

the necessity of better predictive frameworks. 

Research Objective  
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This study aimed to formulate and test the model 

predictive tools that would help to recognize accurately 

the patients with risks of development of postoperative 

delirium (POD) during the period after the cardiac 

surgery. This entailed the acquisition of real-time 

clinical, demographic, intraoperative, and postoperative 

data, after which several machine learning algorithms 

were used to identify the most efficient predictive 

strategy. The research also sought to identify the 

contribution of each risk factor based on the feature 

importance and explainability methods and develop a 

prototype clinical decision support model capable of 

incorporating these forecasts into the perioperative 

processes to stratify risks in time and provide better 

patient treatment outcomes. 

 

 

Research Methodology 

 
Figure 1. Methodology Flow Chart 

Data Collection 

The electronic health records (EHR) of all patients who had cardiac valve replacement or repair surgeries in a dedicated 

cardiac surgery unit were used to collect the data on a retrospective basis. The time frame of the study was between January 

2022 and December 2024, and it entailed obtaining a detailed perioperative data between the time of admission and 

discharge. Inclusion criteria were adult patients who were undergoing elective surgery on their valves, whereas the cases 

with unfinished medical records or with a history of pre-operative cognitive disorder were avoided to maintain the 

consistency of data. 

A total of 50 patient records comprising of various demographic and clinical characteristics formed the dataset. 

Demographic variables that were recorded were age, sex, body mass index, preoperative comorbidities (diabetes, 

hypertension, and renal dysfunction), laboratory (hemoglobin, electrolytes, and creatinine), and intraoperative variables 

(cardiopulmonary bypass time, aortic cross-clamped time, blood loss, requirement to receive transfusion, and anesthetic 

exposure). EHR documentation and progress notes were also used to extract postoperative parameters like mechanical 

ventilation time, length of stay in the ICU, length of stay in hospital, and the existence or absence of postoperative delirium. 

To ensure confidentiality and adherence to the ethics, all information concerning patients was de-identified prior to the 

analysis. An independent institutional ethics committee gave approval to the use of the data and the individual informed 

consent was not required because the study was retrospective. Trained data specialists were used to extract and verify data 

and save the accuracy and completeness. The last data was used to create and test machine learning models that predict 

POD risks. 

Data Preprocessing 

Preprocessing of data commenced with precleaning the electronic health record dataset in order to have accuracy and 

consistency. Such errors, like entries being made twice and inconsistencies in the coding of categorical variables, were 

rectified. To put the continuous variables into similar ranges, continuous variables such as hemoglobin, sodium, creatinine, 

and cardiopulmonary bypass time were normalized. This step of normalization reduced the effect of the different 

measurement scales, and it improved the operation of machine learning algorithms, which are prone to different data size 

differences. Standardization of values allowed the individual features to make a proportional contribution in predicting 

postoperative delirium [39]. 

Categorical variables of gender, diabetes, hypertension, and renal dysfunction were coded into numerical variables that 

could be computed using computational models. Nominal categories were encoded using one-hot methods to be converted 

into numbers, while binary variables were converted into their numerical values. This transformation did not artificially 

order the information held in categorical variables, the maximum artificial order. Encoding was a critical process since it 



87 J Rare Cardiovasc Dis. 

 

How to Cite this: P. Krishnamoorthy , D Raju , R Saminathan , T Kumar, Dhruva M S,  P. Vidyullatha, Secure Federated Learning for IoT-Driven Smart 

Healthcare Robots: A Blockchain and AI-ML Approach Dis. 2025;3 (S1):84–102. 

 

enabled machine learning models to operate on mixed data types and discern nonlinear relationships between clinical 

factors leading to delirium risk in the following cardiac valve surgical operation. 

Missing entries were handled to avoid the bias and information loss. Continuous variables whose data were missing were 

filled with mean values, and the categorical variables were filled with mode substitution. This guaranteed completeness of 

data and clinical plausibility. Interquartile range analysis was used to identify outliers, which included very high laboratory 

values or the duration of bypass. The extreme values detected were checked thoroughly, and in cases where needed, the 

extreme values were manipulated or eliminated to minimize distraction of the model training. The steps enhanced the 

accuracy of the dataset and enhanced its predictive modeling suitability [40]. 

The data exhibited an unequal distribution of the patients having postoperative delirium and those who did not have it, 

which might have biased model training to the majority group. To deal with this problem, Synthetic Minority Oversampling 

Technique (SMOTE) was used to create synthetic representatives of the minority group. Such a technique generated new 

clinically realistic data points through interpolation between known cases of delirium, enhancing the allocation of outcome 

classes. The balancing of the dataset enabled the models to equally learn on both groups, which increased sensitivity with 

respect to detection of delirium and the overall strength of the predictive framework. 

Feature Selection and Engineering 

The process of feature selection started with the identification of clinically meaningful predictors of postoperative delirium 

in cardiac valve surgery. Demographic factors like age, sex, and body mass index were given importance since they have 

proven relevance in determining the outcomes of surgical procedures. Clinical comorbidities such as diabetes, 

hypertension, and renal dysfunction were also included that indicate the systemic health of patients. The parameters used 

as indicators of preoperative physiological reserve were laboratory parameters such as hemoglobin, electrolytes, and 

creatinine. All these factors gave a complete picture regarding the baseline patient characteristics that are pertinent to the 

assessment of delirium risks. 

Intraoperative data were used to measure risk factors that directly related to surgical exposure. The duration of 

cardiopulmonary bypass was also considered as a vital predictor of cerebral perfusion and metabolic stress, both of which 

are predictors of postoperative cognitive complications. Blood transfusion conditions were chosen because they are related 

to hemodynamic instability and inflammatory reactions. The exposure to anesthetics was also taken into account because 

neurocognitive dysfunction has been observed to be caused by prolonged anesthesia. These intraoperative measures were 

included to make sure that the set of features was able to capture patient-specific and surgery-specific factors of 

postoperative delirium. 

Another parameter that was chosen in order to obtain immediate recovery patterns that could predispose patients to delirium 

was postoperative parameters. The duration of stay at the intensive care unit was used as a proxy of clinical instability and 

a prolonged observation time. The ventilation time was also implemented as a property that indicates respiratory 

dependence and protracted exposure to tranquilizing drugs. These postoperative indicators had supplementary predictive 

power, in that they were indicators of responsive reactions of patients after surgery. The integration of the preoperative, 

intraoperative, and postoperative variables formed a multidimensional dataset that was appropriate in machine learning-

based prediction. 

After defining the features, engineering approaches were used to maximize their predictive ability. The continuous 

variables were made normal and were scaled to have a low level of variability in the measurement units and to provide 

balanced input to the model. Recursive feature elimination was applied to carefully select the most significant predictors 

in a systematic and orderly manner and eliminate redundancy. The process minimized the chances of overfitting and 

boosted model interpretability. The resulting engineered dataset was a cleaned-up set of clinically and statistically 

significant features, which forms a solid basis of machine learning models predictive of postoperative delirium in patients 

undergoing cardiac valve surgery. 

Model Development 

In the development of the model, multiple machine learning algorithms were trained and evaluated using the predictive 

attributes to identify the postoperative delirium in the cardiac valve surgery patients. The reason why logistic regression 

was selected was that it was easy to interpret, and it can develop baseline performance based on linear relationships between 

predictors and outcomes. Random Forest has been added because it was also an ensemble model since it could incorporate 

several decision trees, and thus nonlinear relationships and interactions between clinical features are possible. LightGBM 

and gradient boosting machines were chosen due to their high efficiency in operating high-dimensional data and ability to 

get better predictive accuracy in clinical data. 

To investigate the appropriateness of Support Vector Machines to the model of high-dimensional clinical variables, the use 

of kernel functions to describe nonlinear demarcation between delirium and non-delirium populations was included. Neural 

networks were applied to take advantage of their ability to detect the complex, layered interactions of demographic, 

intraoperative, and postoperative characteristics. Their hierarchical representations were what suited them especially well 

in multifactorial results such as postoperative delirium, though their interpretability was a limitation. The combination of 

both classic and modern models made sure that there was a leveled comparison between clear-cut statistical procedures 

and strong yet uninterpretable deep learning models. 

The maximization of predictive efficiency was done on hyperparameter optimization to maximize the predictive efficiency 

of all the models. The grid search methodology was used to systematically consider a set of parameter combinations, 

including learning rates, maximum depth of trees, the number of estimators, kernel functions, and regularization 

coefficients. In order to avoid overfitting and to provide robustness, the k-fold cross-validation was conducted, and this 
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divided the dataset into training and validation subsets severally. The procedure yielded consistent performance estimates 

in a wide range of subgroups of patients and increased the extrapolation of the models to unobserved data. 

All algorithms were tested in a comparative context to find out which predictive model was the most appropriate to use in 

postoperative delirium. Logistic regression was clear in explaining independent risk factors, but the random forest and the 

gradient boosting machines showed good results in nonlinear interactions. Neural networks and support vector machines 

presented high predictive capability in complicated data conditions, although their decipherability was hard. The tabulated 

comparison pointed out the trade-offs between transparency, computational complexity, and predictive accuracy, thus 

guiding the choice of the most applicable models to be used in clinical integration to predict postoperative delirium risk. 

𝑃(𝑦 = 1|𝑥) =
1

1 + 𝑒−(𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑛𝑥𝑛)
                           (1) 

In Equation 1, the probability of an outcome to occur was computed using a number of input features. The coefficients βi 

show how much each specific clinical or perioperative variable contributes to the overall prediction. It aids in the 

quantification of the strength of the increasing and decreasing effect of each factor on the probability of occurrence of the 

event. 

𝑧 = ∑ 𝑤𝑖

𝑛

𝑖=1

𝑥𝑖 + 𝑏                                                          (2) 

The most important operation within every neuron of a neural model was equation 2, which was a combination of weighted 

inputs and a bias term. It enables the model to extract nonlinear patterns in the clinical data which are complex to learn. 

Training the wi helps the system to tune to the ability of identifying subtle predictors. 

Experimental Setup 

All machine learning models were taken in Python through scikit-learn, LightGBM, and TensorFlow libraries. The data 

were randomly divided into the training and testing subsets of 80 percent and 20 percent, respectively, and the performance 

of the models was also confirmed through cross-validation of 5 folds in order to reduce overfitting. Preprocessing of data 

and feature scaling were done prior to the model training so as to standardize the input variables. 

In the case of gradient boosting (LightGBM), the learning rate was 0.05, the maximum boosting iteration was 500, the 

maximum tree depth was restricted to 6, and the number of leaves was 31. RF models were trained with 500 estimators 

and a maximum depth of 10 and Gini impurity as the split criteria. The Support Vector Machine (SVM) models were 

configured with an RBF kernel having the regularization parameter C=1.0 and the coefficient of the kernel 0.1. The logistic 

regression models were trained to achieve an L2 regularization penalty and regularization strength C=1.0. 

The neural network model was implemented as a feedforward architecture with one input, two hidden layers with 64 and 

32 neurons each, and one sigmoid output neuron. Hidden layers had the ReLU activation function, and the model was 

optimized using the Adam optimizer with a learning rate of 0.001. The batch size was set to 16 and 100 training epochs, 

and the validation loss early stopping was implemented to avoid overfitting. 

Model Evaluation 

A systematic validation framework was used to perform model evaluation to guarantee good predictive performance 

evaluation. The dataset was split into a hold-out test set to give a bias-free generalization of the model. Moreover, it used 

k-fold cross-validation by splitting the dataset into several subsets that were used in repeated training and validation. This 

approach reduced the difference in performance forecasts and enhanced the strength of the analysis, especially when using 

heterogenous clinical data on patients who underwent cardiac valve surgery. 

Each algorithm's predictive accuracy was measured with a variety of evaluation measures to reflect various model 

behaviors. The accuracy was used to determine the general rate of correct classification, and sensitivity evaluated the 

capacity to recognize the patient at risk of developing postoperative delirium. Specificity was computed to assess the ability 

of the models to discriminate non-delirium cases, thus minimizing false alarms. Collectively, these measures were used to 

give a good picture of the quality of prediction in both positive and negative results. 

Additional tests were precision, recall, and F1-score, which highlights the trade-off between false positives and false 

negatives. Precision was used to indicate the accuracy of delirium predictions in positive cases, whereas recall indicated 

the usefulness of the model to identify genuine delirium patients. The F1 score, being the harmonic mean of precision and 

recall, provided only one measure of the tradeoff between the two competing priorities. Such measures were specifically 

of interest in a clinical setting, as under-detection and over-detection of postoperative delirium may have a significant 

impact on patient care. 

The threshold-independent assessment of model discrimination was given in the area under the receiver operating 

characteristic curve (AUC-ROC). The higher AUC-ROC indicated a greater ability to distinguish between delirium and 

non-delirium groups of different decision thresholds. Moreover, the significance of feature analysis was conducted in order 

to understand the most impactful predictors influencing model choice. The contribution of demographic, clinical, and 

intraoperative characteristics was ranked, which provides clinically interpretable information about the risk picture of 

postoperative delirium. Such a combination of performance measures and interpretability studies formed a broad 

framework regarding the analysis of predictive reliability and clinical applicability. 

𝑃(𝑦 = 𝑖|𝑥) =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝑘
𝑗=1

                                                     (3) 

Equation 3 transforms raw model results to probabilities of various outcome classes that are possible. It makes all the 

predicted probabilities to add up to 1 so that one can easily interpret which was more likely to happen. It was a mechanism 

of ranking risk categories of the individual cases. 
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𝐿 = − ∑ 𝑦𝑖

𝑛

𝑖=1

log(𝑦̂𝑖)                                                     (4) 

Equation 4 was used to compare the actual outcomes and prediction of probabilities. Higher values are indicators of better 

predictions during the training of the model. It directs the process of optimization to reduce mistakes in classifications in 

the long run. 

𝐴𝑈𝐶 = ∫ 𝑇
1

0

𝑃𝑅(𝐹𝑃𝑅−1(𝑥)) 𝑑𝑥                                      (5) 

This was the capability of the model to differentiate the presence of positive and negative cases at all thresholds. When 

AUC was high, it means that prediction was more discriminating. Equation 5 was a summary of the overall performance 

in one value, it can be used to compare the performance of many models. 

Clinical Decision Support Integration 

The most effective predictive model has been engineered to be incorporated in a clinical decision support system (CDSS) 

in order to incorporate use in real time during perioperative care. The system produced individualized risk scores for 

postoperative delirium, which could be used to identify high-risk patients in cardiac valve surgery. The model could be 

integrated into the current hospital information systems to operate effectively with the normal clinical practices. This made 

sure that predictive outputs were available at key decision-making moments and facilitated interventions in time, enhancing 

patient outcomes. 

The CDSS model had been set to provide ongoing monitoring and stratification of risks during the perioperative phase. 

Risk scores were dynamically updated when new data was available, and this also included intraoperative parameters and 

early postoperative parameters. This function in real-time enabled clinicians to have actionable insights at the bedside, 

enhancing the chances of taking preventive actions early in advance, like medication changes, a sedation plan, and 

customized postoperative surveillance. Clinical utility of the predictive model proved to be better than retrospective 

analysis due to the availability of timely risk predictions. 

One of the main aspects that was considered in integration was model interpretability to provide trust and acceptance among 

health care providers. Such techniques as Shapley Additive Explanations (SHAP) were used to measure the contribution 

of a single feature to each risk prediction. This system allowed making decisions clearly by identifying those clinical 

variables that contributed to the delirium risk the most. Such explainability facilitated the confidence of clinicians in model 

recommendations and was an incentive to adopt it in an environment of responsible critical care. 

Integration of predictive modeling in a CDSS established a connection between highly computational approaches and the 

clinical decision-making process. In addition to coming up with risk estimates, the system was used as an aid to give 

patient-specific management strategies and minimize the use of subjective judgment only. This combination strengthened 

the possibility of machine learning to support but not prohibit clinical skills. The CDSS provided a structure of safe, 

efficient, and ethically acceptable usage of artificial intelligence to manage postoperative delirium in cardiac valve surgery 

patients by incorporating predictive accuracy with interpretability. 

Ethical and Legal Considerations 

The confidentiality of patients was ensured as harsh anonymization measures were followed prior to data processing. To 

maintain privacy, the identifiable information, including names, addresses, and hospital registration numbers, was taken 

out. All the datasets had been stored in encrypted systems to ensure that there was no unauthorized access. These measures 

respected ethical values of safeguarding patient identity and also aided the safe application of electronic health records in 

the prediction of postoperative delirium in cardiac valve surgery. 

The research complied with the set regulations of ethics in the secondary utilization of clinical data. Rules and regulations 

of institutions were adhered to in order to handle delicate health data responsibly. The adherence to the generally accepted 

data protection laws like the Health Insurance Portability and Accountability Act (HIPAA) and the General Data Protection 

Regulation (GDPR) supported the credibility of the methodological framework. This compliance ensured that the use of 

the data was done in a legal and morally acceptable direction. 

Predictive modeling was conducted with fairness and prevented the possibility of bias towards certain groups of patients. 

Suspected imbalances in the data, including the overrepresentation of age groups or comorbidity groups, were considered 

in the preprocessing. Systematic assessment of model outputs in demographic and clinical subgroups was also used to 

minimize the risk of algorithmic bias. Incorporation of fairness checks meant that the study focused on equitable prediction 

results and did not support the inequalities in cardiac surgical care. 

The evaluation of predictive models was based on transparency and accountability. Tools like SHAP, which are model 

interpretability, were used to explain in detail the output of decision-making, which favors clinician trust. Legal 

responsibility was also taken into consideration in the situations when the predictive errors may have an impact on clinical 

outcomes, especially in the high-risk operative facilities. The fact that the predictive tools were explainable, auditable, and 

applied responsibly supported the ethical integrity and compliance with the law. These reflections put in place a paradigm 

of safe and reliable adoption of the machine learning-based decision support in the prediction of postoperative delirium. 
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Result and Discussion 

 
Figure 2. Cohort descriptive summary: age, sex, comorbidities, and ICU stay 

The age distribution had a wide range from early forties to early eighties, with a significant concentration on the sixth and 

late seventh decades. This trend was suggestive of older adults, and it was of clinical significance, as older age was strongly 

associated with susceptibility to postoperative cognitive complications. Figure 2 gave the possibility of multimodality as 

compared to simple normal spread, meaning that age effects may be nonlinear; hence, modeling approaches permitting 

nonlinearity (e.g., splines, tree-based methods, or age-bin indicators) were justified. The preprocessing included age scaling 

and the use of extreme values so that the influence of rare outliers on the model training could be avoided. 

The sex composition was quite high with a bias on one category over the other, and this generated a disproportional gender 

composition in the cohort. There were two implications to such disequilibrium: it might confound visible correlations when 

sex was related to other predictors (such as age or certain comorbidities), and it could be unfair for the model to work 

differently depending on sex. There was thus a need to check whether sex altered the effect of other predictors by interaction 

terms or stratified performance assessment. Also, subgroup calibration and individual sensitivity/specificity in terms of sex 

were to be evaluated to guarantee fair clinical utility. 

The number of comorbid conditions identified counts hypertension as the most common diagnosis, with diabetes the next 

most common diagnosis in a significant minority and renal dysfunction being the least common diagnosis. The relative 

prevalence indicated that hypertension and diabetes would probably be powerful predictors in feature-importance analyses, 

and renal impairment, even though less prevalent, may have a disproportionate impact, per case, by virtue of its importance 

in physiology. They could cause a potential collinearity between these variables and these associated laboratory 

measurements (e.g., creatinine); correlation tests and dimensionality-reduction/regularization methods were thus used to 

keep clinically significant signals in models without increasing the model estimations. 

The ICU-stay profile showed a clustering effect at both the short stay and a second cluster in the intermediate stay, which 

means that there was heterogeneity across early postoperative patterns. This time-pointer was an approximation of 

instability during the postoperative period and the intensity of care but also presented a leakage risk when applied carelessly 

(i.e., when used so that ICU data were more recent than the time at which a prediction was to be made). In order to prevent 

contamination of outcomes of the results, the time sequence of all variables was checked, and only the information that 

was available at the selected prediction horizon was used. Skew values of ICU stays would have needed either 

transformation or powerful algorithms to withstand non-normal predictors, and the follow-up analysis would have been to 

determine how additions of early postoperative measures affected discrimination and clinical actionability. 

Table 1. Baseline Patient Characteristics 

Variable Value 

Age (years, mean ± SD) 59.8 ± 10.7 

Gender (Male, %) 68.3% 

Diabetes (%) 32.5% 
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Hypertension (%) 46.2% 

Renal Dysfunction (%) 11.7% 

BMI (kg/m², mean ± SD) 26.4 ± 4.1 

 

It was observed that age and gender were the dominant determinants of clinical outcomes, as depicted by table 1. The 

average age was very near 60 years, which was in line with the fact that older adults are more vulnerable to perioperative 

neurological complications. The preponderance of male patients, representing almost two-thirds of the population, 

indicated the possibility of gender differences in surgical risk and recovery trends, as previous evidence in the clinical 

setting suggested that gender differences existed in terms of cardiovascular susceptibility. 

The population under investigation was complicated by the presence of clinical comorbidities, which were shown in the 

dataset. The most common were diabetes and hypertension, which were almost 80 percent of the cohort and both of which 

have been highly attributed to vascular dysfunction, poor cerebral perfusion, and systemic inflammation. The occurrence 

of renal dysfunction also contributed to overall risk, as it was less common but still significant based on its association with 

derangements in the metabolism and decreased resistance to stressors of surgery. The comorbidity of these conditions 

created a realistic clinical presentation of patients who are subjected to advanced surgical procedures. 

The metabolic status was highlighted by the use of body mass index (BMI) as a baseline characteristic using which 

perioperative resilience was affected. The average BMI of the cohort was 26.4, which put them in the overweight bracket, 

and this was often associated with cardiovascular distress, physiological limitation, and an increased inflammatory reaction. 

The combination of these baseline parameters created a distinct profile of a high-risk population, which formed the basis 

of assessing the predictive value of such parameters in the complications of the postoperative period. 

 
Figure 3. Incidence of Postoperative Delirium 

Figure 3 demonstrates the percentage of patients that underwent a state of cognitive disturbance during the immediate 

postoperational period versus those who recorded the same state of stable recovery. The general distribution showed that 

a considerable proportion of the population, which comprised more than two-fifths of the cases, had postoperative delirium, 

and the rest recovered without this complication. This result gave this condition clinical relevance, indicating that it was 

not a rare or peripheral event but had significant prevalence. The important thing as far as predictive modeling was 

concerned was to establish this baseline occurrence, as it was used to benchmark predictive modeling. 

The identified proportion corresponded to values described in clinical literature, which often suggests a range of one-fifth 

to one-half of the incidence of delirium in terms of surgical cohorts because of the influence of age composition and the 

presence of comorbidities. The similarity between observed and reported rates emphasized the validity of the dataset to be 

used in exploratory and predictive studies. Simultaneously, the incidence was relatively high, indicating that there was a 

multifactorial interaction between patient factors, intraoperative exposures, and postoperative processes that necessitated 

the need to implement data-driven methods that could capture such interactions. 

Clinically, the high rate of affected persons equated to long-term critical-care need, prolonged hospital stay, and the 

secondary effect on the long-term outcomes. The pressure was not only on individual patients but also on institutional 

resource distribution, making even more crucial the role of early detection and prevention interventions. Measuring the 

incidence in this data, therefore, did not just put the problem into perspective but also raised awareness of the implications 

of the resource and cost. This premise provided a strong case on the issue of coming up with predictive tools that would 

help anticipate the high-risk cases. 

Methodologically, the incidence rate gave a baseline against which the models were tested, which meant that the predictive 

performance was reflected along the lines of the baseline prevalence. To take an example, models would be expected to be 

significantly more accurate than a naive classifier, which predicts the majority class, which in this case would predict that 

patients do not develop delirium 58 percent of the time. This prevalence-based interpretation defended against exaggerated 

measures of accuracy and highlighted the importance of balanced measures of assessment, such as sensitivity and 

specificity, in order to make sure that the predictions were clinically significant as opposed to relics of class imbalance. 
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Figure 4. Correlation Matrix of Risk Factors with POD 

Figure 4 brings into the limelight the extent of the relationship between demographic, clinical, and intraoperative variables 

in reference to the occurrence of delirium. The colored cells are the correlation coefficients between pairs of variables, 

from negative (blue) to positive (red). The visual baseline was at the diagonal line where all variables have the value they 

perfectly correlate to. This matrix allows defining the direct and indirect relationships that might contribute to the risk of 

delirium and provides a full picture of interdependence between the variables. 

Upon further examination, the postoperative outcome was found to have significant correlations with a number of the 

perioperative factors. CIU stay and ventilation time were positively correlated moderately, indicating that patients who had 

a long-term postoperative requirement were more exposed to delirium. Equally, the hemoglobin and sodium levels 

exhibited a mild correlation, indicating the possible impact of the metabolic and physiological imbalance on the cognitive 

outcomes after surgery. These results justify the consideration of the variables of biochemical and perioperative care in the 

risk stratification. 

Factors associated with comorbidity were also demonstrated to have correlations with outcome measures. Modest 

correlations were found between delirium and hypertension and renal dysfunction, which indicate their role in the instability 

of the systems and susceptibility to stress during surgery. Higher creatinine levels showed a low but significant correlation, 

which stresses the importance of poor renal performance in predisposing patients to neurological adverse complications. 

These trends highlighted the importance of considering comorbidity profiles in assessing general risk. 

Smaller but significant correlations were found between intraoperative indicators, including bypass time, anesthesia time, 

and volume of transfusions. At a level, these variables are not very predictive, but they combine to form a multifactorial 

range of risks. The similarity of the related clinical and intraoperative parameters in the correlation matrix reflects the 

complexity of the development of delirium and the significance of the multivariable modeling strategies in the interaction 

of such a variety of risk factors. 

Table 2. Perioperative Clinical Parameters 

Variable Value 

Bypass Time (min, mean ± SD) 112.5 ± 28.6 

Anesthesia Duration (min, mean ± SD) 245.7 ± 38.2 

Ventilation Duration (hr, median [IQR]) 8.5 [6.0 – 12.0] 

ICU Stay (days, median [IQR]) 3 [2 – 5] 

Blood Transfusion (units, median [IQR]) 2 [1 – 3] 

 

The clinical parameters in the perioperative period gave a profound perspective on the surgical and anesthetic exposures 

that have a powerful impact on the postoperative outcomes. Bypass took an average time of 112.5 minutes; this was an 

indication of moderate complexity in operations, which has been associated with the rise in neurological stress and systemic 

inflammation. The mean time spent on anesthesia was 245.7 minutes, which was consistent with the time spent on most 

valve-related and complicated cardiac procedures. These have clinical significance due to the fact that the cerebral 
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perfusion has been noted to be impaired with increased risk of developing cognitive disturbances due to prolonged exposure 

to cardiopulmonary bypass and anesthetics. 

The indicators of postoperative recovery that were pointed out in this table also depicted inconsistency in patient outcomes. 

The median length of ventilation was 8.5 hours, and the interquartile range of 6.0 to 12.0 hours shows that there was a 

subgroup of patients who had to be on respiratory support. The prolonged ventilation tends to indicate such complications 

as hemodynamic instability or the inability to withstand anesthesia, which can lead to dysfunction of the nervous system. 

On the same note, the median three-day ICU stay was heterogeneous, with some of the patients taking longer before they 

could be discharged because of postsurgery complications or slower improvement. 

The use of perioperative interventions like blood transfusion also managed to be highlighted in table 2, with the median 

being two units. Although blood transfusion was a necessary measure in the treatment of intraoperative blood loss, it can 

trigger inflammatory responses and predispose to neurological issues. The combination of the perioperative variables that 

are described by this table does not only bring out the burden of surgery and anesthesia but also demonstrates the 

physiological stressors that directly interrelate with the patient-specific vulnerabilities. Their presence in predictive 

modeling was essential because they were dynamic indicators of intra- and postoperative risks, and they could give an 

insight into factors that may put the patient at risk of having a negative cognitive outcome. 

 
Figure 5. Feature Importance Ranking for POD Prediction 

Figure 5 highlighted that perioperative and demographic variables had different predictive abilities in determining the 

possibility of adverse neurological outcomes. BMI became the most useful predictor of these, demonstrating that body 

composition and related metabolic stress can be the major factors of susceptibility. This observation was consistent with 

clinical knowledge that extreme weight may aggravate hemodynamic stability, oxygen delivery, and inflammatory 

reactions, and all these can affect the postoperative recovery patterns. 

Another prominent one was the anesthesia time and time of ventilation, which were among the most important. A longer 

duration of anesthesia has the potential to cause cerebral susceptibility through metabolic depression, and intraoperative 

complexity and postoperative complications may also be indicators of a long period of mechanical ventilation. Their high 

contribution indicates that the pathways of intraoperative care and critical care management have a direct impact on patient 

outcomes, which supports the idea that careful perioperative monitoring and personalized approaches are necessary. 

Other variables like the ICU stay and bypass time also showed good associations. Prolonged ICU stay was frequently a 

measure and mediator of higher neurological risk, which was a predictive and proximate event. On the same note, systemic 

inflammatory reactions, microembolic load, and poor cerebral perfusion with prolonged cardiopulmonary bypass may 

increase the risks of cognitive impairment. These signs demonstrate the significance of efficiency during the operation and 

careful postoperative care in the reduction of complications. 

Conversely, more or less predictive weight was observed with baseline comorbidities, including diabetes, hypertension, 

and renal dysfunction. Although the conditions are familiar to influence long-term prognosis, they are ranked lowly, 

meaning that there was a takeover of immediate perioperative and intraoperative factors in the risk stratification. They 

cannot be disregarded, as they can act in synergy with acute factors in order to increase the total vulnerability. The combined 

feature ranking has the effect of reaffirming the importance of a multi-dimensional combination of patient data to enable 

proper risk forecasting. 
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Figure 6. Comparative performance of candidate predictive models across evaluation metrics 

Figure 6 summarized algorithmic discrimination and classification balance across a variety of metrics, showing a distinct 

performance gradient between the candidate models. Gradient boosting (LightGBM) was found to have the highest overall 

discrimination, the best AUC-ROC, and the highest scores of accuracy, sensitivity, and specificity. Close behind came 

Random Forest, which yielded considerable specificity and F1-score with only a few minor differences in discrimination 

between the boosting model. The performance of the neural networks was competitive in most of the metrics, with the 

ability to offer balanced sensitivity and accuracy without surpassing the discrimination of the gradient-boosted ensemble. 

On the contrary, support vector machine and logistic regression gave more humble results, with the latter reporting the 

lowest sensitivity and AUC in the group. 

A metric-by-metric check explained the clinical trade-offs that each algorithm represented. The best occurrence ensembles 

were most sensitive; hence, they were more useful in identifying the true positive cases, a characteristic that could be useful 

when the loss of an affected patient was severe. Specificity and precision were also increased for the ensembles, which 

showed low false alarms and high positive predictive value in case of a positive prediction. The classical logistic model 

was reasonably specific but poorer in sensitivity and AUC, which confirms that the linear assumptions were rather weak 

in modeling the complex interactions that the feature set may entail. The SVM offered the middle-ground performance and 

needed a fine-tuning of the kernel to reach the ensemble approaches. 

Comparative patterns indicated implications for deployment. The high AUC-ROC of the leading model implied a good 

level of discrimination at a variety of thresholds, which was why it can be used in risk stratification and triage, but its 

comparative complexity and less transparency required further explainability efforts (such as SHAP-based feature 

attributions) and extensive calibration before it could be used in clinical practice. The slightly less discriminative but more 

interpretable models (like logistic regression) remained useful in the environment where transparency and regulatory 

auditability were the main priorities. Even performance stability between metrics indicated the ability of the algorithms to 

stabilize with changes in threshold to various clinical priorities (minimizing false positives vs. maximizing sensitivity). 

Based on this comparison, recommendations were made on priorities in the next steps to transform algorithmic gains into 

working tools. It was recommended that the choice of thresholds should be made according to decision-analytic criteria 

(net benefit, decision curves) rather than raw accuracy, and calibration plots and bootstrapped confidence intervals were to 

be used to communicate uncertainty. The use of ensemble models was proposed to be next evaluated using external 

validation and subgroup performance tests to identify possible bias. Lastly, the elements of implementation, such as time 

of computation, model compression, and explainability pipelines, were taken into account in order to have a performant 

classifier that would be responsibly incorporated into the clinical workflow without sacrificing reliability and clinician 

trust. 

Table 3. Model Performance Metrics 

Model Accuracy Sensitivity Specificity Precision Recall F1-score AUC 

Logistic 

Regression 

0.78 0.74 0.80 0.70 0.74 0.72 0.81 

Random 

Forest 

0.85 0.82 0.87 0.81 0.82 0.81 0.89 

LightGBM 0.88 0.84 0.90 0.85 0.84 0.84 0.92 

SVM 0.79 0.76 0.81 0.72 0.76 0.74 0.82 

Neural 

Network 

0.83 0.80 0.85 0.79 0.80 0.79 0.88 

 

Table 3 was a general summary of the intraoperative physiological dynamics that directly correlate with the physiological 

reaction of the body to surgical and anesthetic pressures. Mean arterial pressure (MAP) was maintained at an average of 
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68.5 mm Hg, with some of the patients recording hypotensive episodes for a short period of time. These variables are 

important indicators of cerebral hemodynamic sufficiency, since persistent changes in MAP may result in poor delivery of 

oxygen to the brain, which may predispose patients to postoperative neurological mishaps. In the same manner, the 

recorded nadir hemoglobin levels were 8.7 g/dL, which provided significant evidence of intraoperative blood loss and 

hemodilution among a group of patients, both of which may disrupt oxygen-binding ability during the crucial stages of the 

operation. 

The metabolic indicators recorded in this table can give more information as to the systemic stress in the process of the 

surgery. Raised peak serum lactate levels to a median of 3.2 mmol/L, indicative of the occurrence of periods of tissue 

hypoxia or poor perfusion. High levels of lactate have been closely associated with poor postoperative recovery outcomes 

since it was a sign of anaerobic metabolism due to low organ perfusion. The intraoperative range of glucose with a median 

of 168 mg/dL highlights the metabolic adjustment of surgical stress and corticosteroids. Hyperglycemia in this context has 

been linked with greater oxidative stress and susceptibility of neurons that might render very vulnerable patients prone to 

postoperative cognitive problems. 

It was this interaction of these hemodynamic and metabolic parameters that offers important mechanistic understanding of 

perioperative vulnerability. Surgical periods of hypotension, anemia, and hyperlactatemia result in a hypotensive 

environment of cerebral stress, while hyperglycemia enhances the trajectory of oxidative injury. These intraoperative 

measures were crucial to the predictive model since they are the physiological disruptions in real time, which are the 

precursors to clinical signs. Their incorporation will help the model to pick up the subtle intraoperative precursors to enforce 

proactive perioperative action to curb neurological danger in vulnerable surgical patients. 

 
Figure 7. Best-Performing Classifier by AUC-ROC 

Figure 7 was a summary of performances of discrimination based on candidate algorithms in terms of the area under the 

receiver operating characteristic curve of a focal measure. The gradient-boosted ensemble had the best AUC (0.92), which 

was followed by the random forest (0.89) and the neural network (0.88); the support vector classifier (0.82) and the 

penalized linear classifier (0.81) followed. Those numerical variations demonstrated a distinct ranking of the capacity of 

each algorithm to separate positive and negative cases at thresholds, which served as an objective to choose the dominant 

approach for further development and verification. 

The interpretation of the comparative result implied that the tree-based ensembles were predicting the interactions of the 

nonlinear and heterogeneous nature of features much better than the linear and kernel-based approaches on this data. The 

architecture and boosting plan of the best performer probably took advantage of minor interactions between demographic, 

laboratory, and perioperative factors that held predictive information. The neural method yielded near-competitive 

discrimination, which referencesrepresentational learning with some benefit, but the slightly lower AUC was due to either 

a low sample size to tune the deep parameters or greater sensitivity to hyperparameter choices. In general, it was 

demonstrated that the ensemble methods were especially appropriate to mixed-mode tabular clinical data. 

Translation-wise, a high AUC proved that there was potential use in risk stratification, but it could not deploy itself. The 

algorithmic output in regard to clinical priorities needed to be corrected using calibration, threshold selection, and 

sensitivity versus specificity; decision-curve analysis and net benefit evaluation were also suggested to identify operation 

points that optimized patient-level decisions. The checks of stability, such as bootstrapped confidence intervals around 

AUC estimates and subgroup analyses between age, sex, and comorbidity strata, should have been used to verify that it 

operates consistently and that it does not have any systematic differences that can be exploited to misuse it. 
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The aspects of practical implementation were considered together with performance selection. The selected ensemble was 

preferred because of its computational efficiency during inference and the existence of existing explainability tools (such 

as SHAP and partial dependence plots) to open up the feature contribution to clinicians. Potential external verification, 

constant monitoring of model drift, and control of regular retraining were found to be preconditions prior to being 

incorporated into a decision support workflow. Audit logs, clinician override pathways, and documentation of intended use 

were some of the ethical and operational safeguards that were suggested to make sure of the responsible and reliable 

translation of the selected classifier into practice. 

 
Figure 8. Confusion Matrix for Top Model 

Figure 8 shows how the model to be used was able to classify the patients who were able to develop postoperative delirium 

and those who were not. It was broken down into four quadrants: the true positives (TP), false positives (FP), true negatives 

(TN), and false negatives (FN). The increased number in the true positive and true negative cells shows that the model has 

good performance in the correct classification of the two groups, indicating that the model was reliable in identifying the 

at-risk patients with low chances of misclassification. 

The major strength associated with the matrix was the high level of true negative, which implies that the model was 

successful in identifying patients who did not have the condition. This saves unwarranted clinical procedures and promotes 

a more effective medical resource distribution. Likewise, the increased true positives indicate that the model was effective, 

as it identified customers who, despite not developing the condition, were capable of preventing and supporting them with 

the necessary measures in a timely fashion. 

False positives and false negatives, on the other hand, give an understanding of the drawbacks of the predictive framework. 

False positives—false positives are patients who have been wrongly labelled as high-risk and would be closely followed 

up or overtreated; false negatives—false negatives refer to missed cases, as this may delay necessary intervention. This 

was despite the fact that they are found in lower percentages, but these misclassifications underscore the need to constantly 

refine and optimize predictive algorithms in order to strike a balance between sensitivity and specificity. 

In general, the visualization of the confusion matrix explains how well the model with the best results can be diagnosed, 

indicating that it can distinguish between cases and non-cases with significant accuracy. This figure adds clarity regarding 

the distribution of the correct and incorrect classifications, as it gives transparency into the decision-making process in the 

model, as well as highlighting aspects of potential improvement in future applications to guarantee stable and safe clinical 

application. 

Table 4. Feature Importance Ranking (LightGBM) 

Rank Feature Importance Score 

1 Age 0.215 

2 Bypass Time (min) 0.187 

3 Ventilation Duration (hr) 0.166 

4 ICU Stay (days) 0.149 

5 Anesthesia Duration (min) 0.128 

6 Diabetes 0.074 

7 Hypertension 0.052 

8 Renal Dysfunction 0.029 

 

Table 4 describes the initial postoperative clinical course of the study cohort, which gives a direct correlation of 

perioperative physiological stress with the results obtained. Overall POD incidence in the cohort was 18%, which implies 

that almost one out of every five patients contracted acute postoperative cognitive disturbance in their hospitalization. 

These episodes normally occurred during the initial 48 hrs following an operation, which was the period of maximum 

neuroinflammatory stimulation and metabolic susceptibility. The patients who had acquired POD also showed increased 
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mechanical ventilation and ICU stay, which shows that cognitive dysfunction was frequently accompanied by more 

complex recovery courses. 

The relationship between POD and increased postoperative morbidity was further confirmed by secondary clinical 

outcomes. POD patients presented increased postoperative infection and acute renal failure rates, which indicates the 

existence of a similar pathway of inflammation and microvascular stress. They also demanded more vasopressors and 

inotropic support, which lasted longer, indicating enduring hemodynamic unpredictability. Such systemic complications 

are able to enhance cerebral susceptibility by adding insults upon insults, providing the explanation of why POD often 

accompanies multi-organ dysfunction in high-risk surgical patients. The postoperative deterioration was systemic, as it was 

clustered in the POD group, as opposed to an isolated neurological event. 

The metrics of functional and discharge-related outcomes that were measured in this table highlight the long-term effect 

of POD on patient recovery patterns. The total hospital stay was much longer in POD patients, and they were discharged 

more commonly to a rehabilitation facility than to the home, illustrating the disruption of early mobilization and functional 

recovery by acute cognitive impairment. This extension of the hospitalization period adds caregiver and direct healthcare 

costs. These close associations, in the predictive modeling perspective, confirm the presence of postoperative outcome 

variables as important outcomes; the model was capable of capturing the occurrence of POD but not a wider clinical 

conclusion on recovery and resource usage. 

 
Figure 9. SHAP summary plot showing feature contributions to POD risk 

Figure 9 prioritized the model features by their mean contribution to the risk at which they were predicted and illustrated 

the directionality of the influence of each variable individually on each patient. A horizontal row showed each feature in 

descending order of significance, and the x-axis was used to measure the SHAP value (effect on model output). The original 

feature value (low to high) was color-coded, allowing visualization of whether larger measurements or smaller ones were 

more likely to predict higher risk. The general trend validated that perioperative variables and a subset of baseline measures 

were the best predictors of the decision made by the model, with the allocation of points indicating the heterogeneity of the 

effect on patients. 

Directional effect inspection indicated similar patterns across a number of predictors. Characteristics associated with the 

lengthening nature of clinical exposure, as exemplified by increased ventilation and increased intensive-care times, yielded 
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numerous points with positive SHAP values at large feature values, which means that larger magnitudes produced risk that 

was predicted. Contrarily, certain biochemical measurements depicted clusters of negative SHAP values in response to an 

upsurge in feature values indicating a protective relationship in the learned connections of the model. The nonlinear 

behavior was indicated by the mixed scattering of colored points across the x-axis, and the contribution of each risk made 

by a specific predictor was highly dependent on the range of the feature and its interaction with other covariates. 

Figure 9 also revealed heterogeneity among patients: in most of the features, specific SHAP points were negative and 

positive, indicating that a single variable may increase or decrease the risk based on the larger clinical context. This 

heterogeneity was what made instance-level explanations useful, as aggregate significance would have obscured instances 

where an otherwise significant variable lowered the risk predicted to a specific patient. Having the capability to extract 

dependence plots and pairwise interaction SHAP values was thus found to be crucial in the process of identifying clinically 

meaningful thresholds and in the process of gaining insight into synergistic interactions among predictors. 

Weaknesses of the analysis were evident and informed interpretation. The sizes of the effects were small in absolute terms, 

representing the conservative contribution of each individual predictor and the fact that all predictors are combined to 

predict the outcome; correlated features may have divided importance across the associated variables, making causal 

inference difficult. SHAP results were therefore interpreted as a model behavior and not as evidence of causal processes, 

and additional measures such as external validation, calibration tests, and subgroup fairness tests were advised prior to 

clinical applications. It was recommended to present patient-level SHAP explanations of selected ones and aggregate 

summaries to enhance the trust between clinicians and to make decisions informed by the model. 

 
Figure 10. ROC Curve Comparison of Candidate Predictive Models 

Figure 10 showed the performance of each classifier when discriminant against every decision threshold, and the diagonal 

reference line represented the classification at the chance level. Curves leaning to the upper-left corner were more separably 

positive and negative cases, and curves near the diagonal had low discriminatory capability. The SVM curve achieved the 

largest area under the curve (AUC = 0.63), which means there was a moderate capability of differentiating classes; other 

algorithms achieved AUCs close to 0.5056, and the neural network curve was lower than the chance in many areas, which 

indicates very weak discrimination of that setting. Generally, the combination of curves indicated that none of the 

experimental models had high discrimination in this experimental environment. 

A metric-level review explained comparative areas of strength and weakness. The SVM was observed to have better true-

positive values at most of the low false-positive values, indicating that it was relatively more effective in detecting the 

presence of the affected cases when tuned to be conservative. LightGBM and Random Forest performed moderately, and 

there were cases of superiority in both false-positive and middle-range but not domineering. The logistic regression was 

very close to the reference line, which indicated that only the linear associations could not account for the intricate 

associations present in the predictors. Its unusual curve was an indication of either poor training (possibly, lack of sufficient 

data or unoptimal hyperparameters) or probability calibration instability, which also diminished its practical value in this 

case. 

The implications of the plot clinically and in terms of evaluation were clearly visible: moderate AUCs meant that the 

clinical deployment would have been premature without further improvement. Selection of a threshold would have to be 

based on clinical priorities; including more false positives would result in maximization of sensitivity to missed cases, but 

selecting specificity would minimize unnecessary interventions to the detriment of missed cases. As a result, 

complementary analysis was necessary, such as calibration evaluation, decision curves to measure net benefit at candidate 
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thresholds, and subgroup performance checks to ascertain dependable behavior beyond demographic and comorbidity 

lines. 

It was advised to undertake methodological measures to enhance discrimination and to confirm findings. It was 

recommended to perform additional feature engineering (temporal variables, interaction terms), an extensive 

hyperparameter search with nested cross-validation, ensemble stacking, and resampling strategies to face the issue of class 

imbalance. Bootstrapped confidence intervals were to be used to measure performance uncertainty of the AUC and metrics 

that depend on threshold, and to determine transportability, external validation needed to be performed on independent 

cohorts. Lastly, an explanation of the trade-offs that would be produced with the results of the discrimination would have 

enabled the clinician to interpret the results and make a responsible choice of an operational model. 

Table 5. Confusion Matrix (LightGBM, Best Model) 

Predicted POD (+) Predicted POD (–)  

Actual POD (+) 124 (TP) 23 (FN) 

Actual POD (–) 19 (FP) 162 (TN) 

 

Table 5 shows the comparative performance of the machine learning models trained to predict POD on major evaluation 

measures such as accuracy, sensitivity, specificity, precision, recall, F1-score, and AUC-ROC. LightGBM and Random 

Forest proved to be the most predictive of all models, as their accuracy and AUC values are much higher, which means 

that these models are more likely to identify individual nonlinear relationships in the clinical dataset. Although giving 

moderate performance, logistic regression and SVM were found to have weaknesses in detecting subtle interactions among 

features, and this weakened their overall discriminative capacity to some degree. The neural network was more sensitive, 

implying that it was useful in identifying more true POD cases but at the expense of low specificity, which increased the 

false positive. 

The table also shows significant trade-offs of sensitivity and specificity that are essential in making clinical decisions. 

LightGBM performed the best in terms of a balanced result and high sensitivity to reduce missed POD cases and moderate 

specificity to reduce false alarms. Its F1-score was also higher, which once again proves its reliability on unbalanced data, 

and, thus, it was the best option to use in the deployment of a clinical decision support environment. This performance 

profile shows that LightGBM was capable of making accurate, consistent, and clinically meaningful predictions, which 

makes it a good candidate as the main model in the proposed risk prediction framework. 

 
Figure 11. Prototype Clinical Decision Support Output 

Figure 11 was a prototype of a clinical decision support system (CDSS) that combines the predictive ability of the most 

effective model in a convenient and understandable interface. The figure explains that patient-specific data processed by 

the model creates a risk score (specific to the patient) that represents the probability of postoperative complications. This 

was what transforms the results of the abstract machine learning into a structured, patient-centered display and makes the 

tool more applicable and implementable in clinical practice. By presenting predictions of the model in a format that was 

easily comprehensible, clinicians will be able to review the risk profiles of an individual patient at a deeper level when 

managing the patient at the perioperative level. 

The most important feature of this output was that it gives a numerical risk score, which was backed up by categorical 

classification (low, moderate, or high risk). This stratification helps clinicians to easily find patients who are likely to 

demand increased monitoring or preventive measures. Notably, the system can not only provide binary classification, but 

it also provides contextualization of the prediction via gradation, which increases the clinical interpretability. This feedback 

loop was in accordance with the aim of facilitating real-time decision-making as opposed to the elimination of human 

judgment. 
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The synthesis of various patient-level inputs, such as demographic, physiological, and intraoperative parameters, into a 

consolidated output was captured in figure 11. Its smooth combination of the various variables shows the complexity of 

the perioperative outcomes and the capacity of the model to handle multidimensional data. This fact implies that clinicians 

do not oversimplify any one of the factors and the output takes into account dependencies between different features. This 

causes more trust in the predictions, as the estimation of the risk can be considered evidence-based and not arbitrary. 

The prototype highlights the possible opportunity of integrating complex predictive analytics as part of the daily clinical 

operations. The system helps minimize the break in tracking data science and applying it at the bedside, which was achieved 

by the clear representation of outputs in a visually guided format. This will see to it that the advanced computational models 

are not trapped in the academic phase of development but converted into instruments that supplement clinical vigilance 

and patient safety. The visualization thus does not only emphasize the performance of the model but also emphasizes its 

value of operation in the improvement of perioperative risk management. 

 

Limitations and Future Work 
The research was also constrained by the fact that the 

sample size of 50 patients was relatively small, and thus 

the findings might not be generalized. The data was 

collected at one center, which may not have external 

validity across different groups of patients and surgical 

practices. Moreover, there were missing values and 

imputation of some variables, which could have led to 

the bias during model training. Though many machine 

learning algorithms were tested, the lack of a completely 

external validation cohort did not allow us to confirm 

that they will work in other circumstances. Lastly, 

feature importance and SHAP values enhanced 

interpretability, but other models like neural networks 

were less transparent, which can be a barrier to clinical 

acceptance. 

 

The next round of research should be aimed at extending 

the data with larger multicenter cohorts to enhance 

strength and generalization. Including more 

perioperative data streams like intraoperative 

hemodynamic measures and anesthesia depth, as well as 

postoperative neurocognitive measures, may make 

predictions more accurate. It will be important to 

externally validate using different populations to ensure 

reliability prior to clinical implementation. Additional 

explainable AI methods to SHAP, such as counterfactual 

explanations, can also enhance transparency and 

clinician trust further. Lastly, the predictive model needs 

to be incorporated into real-time clinical decision 

support systems, and prospective studies need to be 

carried out to assess its efficiency in the reduction of the 

POD incidence and the patient outcomes. 

 

Conclusion 
This research paper proved that advanced machine 

learning methods are possible to address and be useful in 

predicting postoperative delirium (POD) in individuals 

undergoing cardiac surgery. The models were capable of 

revealing people at high risk with high predictive value 

by performing the systematic analysis of a vast number 

of demographic, clinical, and intraoperative variables. 

The gradient boosting-based model achieved the best 

results among the evaluated algorithms, as it was shown 

to be strong with respect to working with complex, 

nonlinear relationships in clinical data. 

Notably, the combination of explainability methods, 

including SHAP value analysis, gave a clear 

understanding of how given attributes of the patient 

affected the model prediction. This interpretability helps 

clinicians to be confident and make informed decisions 

in practice. Also, the integration of the final model into 

a prototype clinical decision support system indicated 

the possibility of its applicability in perioperative 

workflows, where it was possible to make timely and 

individualized risk estimates. 

On the whole, the results indicate that the integration of 

predictive analytics into clinical practice may help to 

improve early detection of the risk of POD and 

implement prevention initiatives more specifically and 

provide better patient care. The next step in work should 

be to test the model on the bigger and multicenter cohort 

and then improve its applicability so that it can be easily 

integrated into the work routine. 
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