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INTRODUCTION 
Federated learning (FL) has become a paradigm shift in 

privacy-preserving collaborative model training, 

especially in the healthcare field, where sensitive patient 

information is shared between a variety of institutions 

[1]. Research has revealed the possibility of FL being 

applicable to medical images, including MRI and CT 

scans, in addition to electronic health records, without 

having to combine data centrally [2]. FL can be applied 

to healthcare robots in the field of robotics to enhance 

group decision-making whilst keeping the data locally on 

the device [3]. Nevertheless, the literature notes that non-

independent and identically distributed (non-IID) data 

across hospitals and devices, communication bottlenecks 

in large-scale deployments, and poisoning attacks remain 

persistent challenges in deploying AI to healthcare [4]. 

Although federated learning deals with the issue of data 

locality and privacy in distributed healthcare settings, to 

guarantee the trust and integrity of collaborative training, 

a further security layer is needed, and blockchain 

technology may help [5]. The fact that blockchain 

records are immutable provides the important benefit of 

patient data integrity, and smart contracts are automated 

access control and data sharing solutions [6]. The recent 

investigations have implemented blockchain in securing 
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Abstract:   The growing dependency on smart healthcare robotics has opened up new 

possibilities of real-time patient monitoring, fall detection, and activity recognition; however, 

it has generated major issues regarding data privacy, trust, and resource efficiency. In order 

to solve these problems, a safe and scalable system based on federated learning, blockchain, 

and AI-based optimization was created. Federated learning allowed healthcare robots to 

jointly train predictive models using distributed data on patients such as vital signs, 

environment, and activity history without data centralization. To control confidentiality, the 

methods of differential privacy and secure aggregation were used so that sensitive information 

would not be revealed during training. A trust layer, which involved blockchain, was 

incorporated, which included updates to the model, access control implemented by smart 

contracts, and validation by consensus to reduce tampering of data and malicious input. 

Federated round anomaly detection models were also used to detect poisoning and adversarial 

updates to reinforce robustness. It was tested using a real-world healthcare robotics dataset 

that has confirmed its robust performance on activity recognition, fall detection, health risk 

prediction, and robot assistance optimization. The results of the experiments revealed that 

communication-efficient aggregation plans minimized overhead, blockchain integration 

increased trustworthiness, and privacy-preserving schemes protected patient data and 

preserved a competitive accuracy. Trade-off analysis outcomes indicated the best trade-offs 

between privacy, accuracy, and scalability, which justify their use in real-world 

implementation in low-resource IoT healthcare systems. The proposed architecture provides 

a framework of a safe, reliable, and effective robotic healthcare system that could provide 

intelligent and adaptive patient support in real time. 
 

Keywords:     Federated Learning, Blockchain, Healthcare Robotics, Privacy Preservation, 

IoT Security, Anomaly Detection 
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electronic health records (EHRs), managing supply 

chains of medical resources, and IoT-based health 

monitoring [7]. Regardless of this progress, scalability 

and computational overhead continue to serve as limiting 

factors to deployment in real-time healthcare 

applications [8]. To solve these issues, lightweight 

consensus mechanisms and hybrid blockchain designs 

have been suggested, although their usefulness in 

strongly resource-constrained healthcare settings 

remains a subject of research [9]. Whereas blockchain 

enhances transparency and accountability of healthcare 

systems, it needs to be supported by smart AI/ML-driven 

defense and optimization policies to suppress adversarial 

threats and improve the performance of federated 

learning [10]. Adaptive learning algorithms, such as 

reinforcement learning, have also been studied to 

maximize communication efficiency and maximize 

convergence rates in a federated environment [11]. ML 

models in robotic healthcare systems allow the 

personalization of the services in real time by 

dynamically adapting the federated models in response 

to patient-specific data [12]. Additionally, sophisticated 

techniques of ML optimization like transfer learning and 

meta-learning have been capitalized to eliminate the 

problem of non-IID data in distributed healthcare devices 

[13]. Federated learning is even more crucial when 

AI/ML methods are applied to IoT-based healthcare 

robotics because intelligent and adaptive decision-

making directly influences patient care/safety [14]. 

Healthcare robots based on IoT will be integrated with a 

variety of sensors to record physiological parameters of 

heart rate, oxygen level, and movement of a patient, 

which could be processed to make intelligent decisions 

[15]. Literature describes such applications as robot 

surgery and rehabilitation assistance, aged care, and 

pandemic-related remote monitoring [16]. These robots 

can support processing of large volumes of data in real-

time by being integrated with cloud and edge computing 

[17]. Nonetheless, robotics systems that are developed 

on IoT are prone to cyberattacks, unauthorized access, 

and data manipulations, which jeopardizes patient safety 

[18]. As medical robots gather excessive amounts of 

sensitive patient information on IoT sensors, it is 

necessary to develop privacy-sensitive algorithms that 

would not affect the functionality of the systems but 

would protect patients in terms of confidentiality [19]. 

On the same note, homomorphic encryption would 

facilitate the use of encrypted data in safe computations, 

but its computation cost limits its use in real-time in 

healthcare robotics [20]. 

Research Gap 

Privacy-preserving collaboration has already been 

developed through federated learning in healthcare 

robotics, but still some issues are unsolved. Non-IID data 

of robotic and IoT devices still remains as a barrier to 

model robustness and convergence. Real-time 

deployment in vital healthcare tasks is limited by 

communication bottlenecks, bandwidth, and resource 

constraints. Blockchain provides integrity and trust, but 

with computational and scaling problems that do not suit 

lightweight devices. Differential privacy and 

homomorphic encryption are privacy-preserving 

techniques that result in lower accuracy and slowness. 

Also, the application of blockchain-FL to healthcare 

robotics is still scarce, and the introduction of the new 

technologies such as 6G, digital twins, and quantum-safe 

cryptography is not studied thoroughly. 

Research Objective  

The main aim of the project was to conceive and deploy 

a secure, scalable, and intelligent healthcare robotics 

framework with prey to federated learning, blockchain, 

and AI-based optimization methods. The framework was 

expected to maintain patient privacy in the model 

training distributed form, guarantee trust and 

transparency in collaborative updates, and achieve 

optimal performance in resource-limited IoT settings. 

Precise forecasts of health risks, fall detection and 

activity recognition, effective aggregation policies to 

minimize communication costs, anomaly detection to 

counteract adversarial threats, and blockchain-based 

policies to improve data integrity, accountability, and 

incentive-driven participation were among specific 

objectives. 
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Research Methodology 

 
 
Dataset and Preprocessing 

The data set used to carry out this study included ten major characteristics that could be used in IoT-based healthcare 

robotics: patient ID, heart rate, SpO₂, body temperature, respiratory rate, type of activities, fall detection, air quality index, 

type of robot assistance, and time stamp. These properties were a response to physiological and environmental parameters 

typically being observed in real time by healthcare robots. The data set provided by capturing health indicators in addition 

to contextual data provided a realistic simulation of information to make intelligent decisions in smart healthcare robotics. 

This framework guaranteed that the data was an appropriate basis of federated learning in which confidential patient 

information was still shared among robotic or institutional nodes [21]. 

 

In order to simulate the decentralized characteristics of healthcare robots, the dataset was separated into several clients, 

between five and ten clients. All of the nodes were the robotic agents or healthcare institutions managing localized portions 

of patient records. This architecture was a simulation of the real world in which the distributed systems would gather and 

process patient data without the involvement of a central node. The partitioning enabled the analysis of federated learning 

performance in heterogeneous environments, including taking into consideration the differences in the distribution of data 

frequent in hospitals, clinics, and home-based care settings. This configuration enabled the study to assess the ability of 

federated models to aggregate knowledge effectively while at the same time maintaining data locality and patient 

confidentiality [22]. 

 

Pretreatment was an important component of data protection to guarantee both integrity and consistency of the dataset prior 

to being deployed in federated training. Numerical values like heart rate, oxygen saturation, and respiratory rate were 

brought to normalized scales, which make bias minimal in model convergence and maximize comparability among 

distributed nodes. One-hot encoding was used to convert categorical features, such as the type of activity and the type of 

robot assistance, to facilitate the work of machine learning algorithms. This transformation enabled models to be able to 

interpret non-numeric information and still retain the semantic meaning of each category [23]. 

 

Other preprocessing measures were made to deal with data completeness and quality to strengthen the validity of 

experimental results. Imputation strategies were used to fill in gaps in learning as a result of missing values that are common 

in real-time sensor settings. The timestamps data was maintained to facilitate time analysis and model real-time health care 

monitoring conditions. With such preprocessing practices, the dataset was reconciled with the needs of federated learning, 

blockchain integration, and AI-based optimization. This training established a stable basis for assessing secure, private, 

and resource-efficient solutions in intelligent healthcare robots [24].  



66 J Rare Cardiovasc Dis. 

 

How to Cite this: P. Krishnamoorthy , D Raju , R Saminathan , T Kumar, Dhruva M S,  P. Vidyullatha, Secure Federated Learning for IoT-Driven Smart 

Healthcare Robots: A Blockchain and AI-ML Approach Dis. 2025;3 (S1):63–83. 

 

The dataset used in this study contained 100 patient records with 10 features (heart rate, SpO₂, temperature, respiratory 

rate, activity type, fall detection, air quality index, robot assistance type, and timestamp). It was designed as a synthetic 

dataset to emulate healthcare robotic environments and does not originate from a specific country or institution. To enhance 

generalizability, future work will include larger real-world datasets such as PhysioNet or MIMIC-IV. 

ℒ𝑎𝑐𝑡 = −
1

𝑛
∑ ∑ 𝑦𝑖,𝑐

𝐶

𝑐=1

𝑛

𝑖=1

log𝑝̂𝑖,𝑐                                               (1) 

Equation 1 classifies activities such as walking, resting, or exercising. The multi-class cross-entropy loss improves 

recognition accuracy. It supports real-time monitoring of patient behaviors. 

ℒ𝑓𝑎𝑙𝑙 = −
1

𝑛
∑[𝑦𝑖log𝑝̂𝑖 + (1 − 𝑦𝑖) log(1 − 𝑝̂𝑖)]

𝑛

𝑖=1

                             (2) 

Equation 2 binary loss detects falls with high sensitivity. It separates safe and emergency conditions clearly. Robots can 

trigger assistance when a fall event is identified. 

 
Table 1. Descriptive Statistics of Vital Signs 

Metric Heart Rate (bpm) SpO₂ (%) Temperature (°C) Respiratory Rate 

(breaths/min) 

Count 100.00 100.00 100.00 100.00 

Mean 84.07 94.48 36.91 16.81 

Std 14.45 3.01 0.45 2.89 

Min 60.00 90.00 36.10 12.00 

25% 73.00 92.00 36.60 15.00 

50% 83.00 95.00 36.90 17.00 

75% 98.00 97.00 37.20 19.00 

Max 109.00 99.00 38.20 21.00 

 

Table 1 tabulated the descriptive statistics of vital signs (heart rate, SpO₂, temperature, and respiratory rate) of patients. 

The statistical summary showed the general distribution of each parameter in terms of minimum and maximum values 

together with the mean and standard deviation values. This comparison indicated the physiological differences between 

people, and it could be used as a vital sign of health risk and activity identification. These statistical insights made sure that 

the dataset was diverse, which is a major requirement to construct generalized machine learning models in a distributed 

environment. 

 

The outcome revealed that the vital signs were in clinically valid ranges, but differences were noted between different 

patients and activities. As an example, there was a correlation between changes in heart rate, respiratory rate, and physical 

activity levels (walking or exercise) but not temperature. These results highlighted the relevance of putting physiological 

readings into context with real-time activity data. Through the examination of these baseline distributions, the data helped 

to train the predictive models, which could recognize abnormal patterns, including the initial signs of health decline. 

Descriptive statistics inclusion also offered a basis on which the strength of federated learning algorithms was assessed in 

the presence of heterogeneous data. Given that patient data were generated by a number of nodes that were distributed, 

natural non-IID (non-independent and identically distributed) features were brought into the dataset by variations in vital 

signs. These statistical profiles were useful in coming up with preprocessing procedures, normalization processes, and 

privacy-preserving procedures that conserved medical integrity and yet allowed useful collaborative training among edge 

devices. 

Table 2. Activity Type Distribution 

Activity Type Count 

Walking 28 

Sleeping 27 

Exercising 23 

Resting 22 

 

Table 2 showed the proportion of activities that were noted in the dataset, and this table contained four major categories, 

namely resting, walking, sleeping, and exercising. The counts depicted the representation of the patient activities in the 

samples collected. This distribution was based on real-world health care monitoring situations in which some activities, 

such as resting and walking, were more common than others, such as exercising. Knowledge of this balance was important 

because the activity recognition tasks could be deceptive depending on the existence of representative data on any class. 

 

These differences in distribution of activity directly affected the classification model performance. The other activities, 

including resting and walking, were relatively larger in sample size, and this means that the learning models were able to 

be more accurate in the recognition of these categories. Conversely, categories that had fewer samples, like exercising, 

would pose the risk of class imbalance, and this might lead to biased predictions. Hence, preprocessing techniques and 
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suitable learning algorithms must have taken into consideration such differences in order to realize power recognition in 

all types of activities. 

 

The practical significance of patient behavior monitoring in healthcare robotics was also brought out by the distribution. 

Most common practices, such as resting and sleeping, gave a clue to patient recovery or abnormal inactivity trends, and 

walking and exercise to the levels of mobility and cardiovascular fitness. The activity that robots trained in terms of this 

activity distribution could adapt the level of assistance, between mobility assistance and emergency warnings, based on the 

activity detected. Therefore, the distribution of activities did not only influence the model performance but also directly 

affected the quality of robotic aids offered to the patients. 

 

System Architecture 

The system architecture was created to facilitate distributed learning among healthcare robots and protect sensitive patient 

information. The local training of machine learning models on partitioned datasets was done on edge nodes, in this case, 

the healthcare robots driven by IoT. This method enabled every robotic agent to make use of patient-specific physiological 

and contextual information without immediate exchange of crude records on a central server. The architecture took care of 

data confidentiality by maintaining local training at the place, and at the same time, the robots enhanced their decision-

making abilities in activities like fall detection, health risk assessment, and optimization of assistance [25]. 

 

The architecture was extended with a federated learning orchestrator to coordinate the aggregation of model updates that 

are locally trained. Federated Averaging (FedAvg) and final aggregation methods like Krum and median were used as 

algorithms in order to sum updates together to build a global representation. These techniques mitigated the effect of non-

independent and identically distributed data and lowered the susceptibility to corrupted or poisoned contributions by 

individual nodes. The planner was able to make the global model gain the advantage of distributed knowledge and be 

resilient to the disparities among healthcare robots and institutions [26]. 

 

A blockchain layer was added to the architecture to increase transparency and trust in the collaborative training process. 

This layer ensured that there were records of model changes that could not be changed, which produced a ledger that was 

tamper-proof and which ensured the integrity of every contribution. Smart contracts automated such vital functions as 

access control, validation of the participating nodes, and incentives against dishonest updates. The blockchain layer, which 

operated as part of this integration, guaranteed accountability, prevented malicious behavior, and assisted in safe 

cooperation between distributed healthcare systems and robot agents [27]. 

 

The architecture was designed to offer a security layer to help offer extra security against adversarial threats. The use of 

differential privacy methods added controlled noise to parameterizing updates so that sensitive patient information was not 

inferred, yet without harming model utility. The secure aggregation protocols also made sure that a central orchestrator 

could not receive individual updates, thereby preserving confidentiality even in the aggregation. Engineering mechanisms 

to detect anomalies were adapted to detect malicious/abnormal updates that might interfere with the training process. 

Combined, these measures established a multi-tiered security system, enhancing the security and privacy-protecting 

features of federated learning in intelligent healthcare robots [28]. 

 

Learning Models 

The fall detection model was applied as a binary classification model, in which the result was the presence of a fall event 

(1) or absence (0). The robots used in healthcare with IoT sensors, e.g., accelerators, gyroscopes, and vision modules, 

produced continuous data streams that were fed in locally to process the data streams using federated learning. Such a 

model made it possible to identify unusual dynamics of patient movements, which allowed robotic agents to raise an 

emergency alert in the case of critical events. The binary classifier was critical in the safety of the patients, especially the 

old people and those who have low mobility [29]. 

 

Health risk prediction was intended to be a multi-class classification problem, using patient vital signs (heart rate, oxygen 

saturation, body temperature, and respiratory rate). This model categorized the conditions of the patients under several 

health risk groupings, including stable, at-risk, and critical. The model enabled healthcare robots to actively monitor 

possible risks and intervene in time through analyzing heterogeneous physiological data. With the incorporation of this 

model into federated learning, distributed healthcare systems had the ability to cooperate in risk prediction without 

exposing sensitive medical information to centralized servers [30]. 

 

To categorize patient activities into types specific to resting, walking, sleeping, and exercising, the activity recognition 

model was used. Monitoring of activities was important in smart healthcare settings since it served to support individualized 

treatment, rehabilitation, and daily assistance designs. The IoT-based healthcare robots would use sensor data to detect 

patterns of activities in real time to aid in the optimization of healthcare services. With the addition of this classification 

task to the federated learning setup, activity recognition was enhanced across distributed robotic nodes without 

compromising privacy and flexibility for different patient behaviors [31]. 

Robot assistance optimization was elaborated as a predictive model to be used in establishing the kind of support that 

patients need in various settings. The model took both physiological parameters and environmental parameters, including 
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air quality and activity detected, to prescribe types of assistance, including medication reminders, mobility support, 

emergency alerts, or constant monitoring. This predictive feature increased the effectiveness of healthcare robots because 

it allowed context-specific responses to the needs of patients. The model learned dynamically with local data and received 

global updates in federated learning, which can guarantee better decision-making in real-time healthcare robotics [32]. 

min
𝑤

𝐹(𝑤) = ∑
𝑛𝑘

𝑛

𝐾

𝑘=1

⋅
1

𝑛𝑘

∑ ℓ

𝑛𝑘

𝑖=1

(𝑓(𝑥𝑘,𝑖; 𝑤), 𝑦𝑘,𝑖)                             (3) 

Equation 3 defines the global optimization across distributed healthcare nodes. Each robot trains locally and contributes 

only model insights, not raw data. It ensures collaborative learning while maintaining patient data locality. 

𝑤(𝑡+1) = ∑
𝑛𝑘

𝑛

𝐾

𝑘=1

 𝑤𝑘
(𝑡)

                                                        (4) 

Equation 4 rule updates the global model using local robot updates. The averaging strategy balances contributions based 

on data size at each node. It improves overall prediction without requiring centralized storage. 

 
Table 3. Fall Detection Summary 

Fall Detected (0=No, 1=Yes) Count 

0 (No Fall) 89 

1 (Fall) 11 

 

Table 3 described the results of the fall detection in the dataset in the two classes, Fall Detected and No Fall. Most of the 

documented cases were registered in the “No Fall” category, with a relatively smaller number being the Fall Detected. This 

disequilibrium was a reflection of a realistic healthcare setting in which falls are less common than commonplace and safe 

activity. The emphasis on such distribution was significant due to the fact that unbalanced datasets tend to affect the 

performance of machine learning classifiers and, in this case, need to be addressed by means of some resampling or cost-

sensitive learning. 

 

The table underlined the need to have binary classification that is accurate in order to facilitate patient safety. Although the 

number of positive fall cases was rather low, their recognition had vital significance. False negatives, in which a real fall 

was not recognized, can be life-threatening, whereas false positives, in which a real fall was misidentified, can result in 

unnecessary robot interventions and inefficient operation of a system. Thus, the sensitivity/specificity balance was one of 

the critical factors in assessing the efficacy of the fall-detecting model. 

 

Table 3 served to inform the design of the federated learning model that was trained on distributed healthcare robots. The 

local patient data of each robot maintained a similar imbalance, and the merged global model was targeted to perform 

strong detection in all the nodes. The provided summary, therefore, had some background in the reasons as to why such 

specific mechanisms as anomaly detection and secure aggregation were incorporated into the framework. The table has 

pointed out the importance of directly connecting the patterns of fall detection with the design of the models by highlighting 

how it determines the approach to the methodology and to the evaluation. 

 

Blockchain Integration 

The lightweight permissioned blockchain-based consensus mechanism was created, e.g., Hyperledger Fabric or private 

Ethereum, to guarantee a secure and effective coordination of federated learning processes. Every healthcare robot-

generated model update was a cryptographic hash and stored on the blockchain registry and marked by a timeline. Such a 

mechanism ensured permanence, a factor that ensured that no one could alter historical documents and, at the same time, 

ensured that the training process was transparent. With the adoption of a permissioned blockchain, the system was able to 

ensure low latency and low computational overhead, since it was able to operate in an IoT-driven healthcare setting, where 

devices were resource-constrained [33]. 

 

The blockchain layer was introduced with smart contracts to automate system-critical functions. These executable contracts 

authenticated the integrity of the participating nodes and then proceeded to make contributions to the federated training 

process. Smart contracts implemented access control policies, which meant the ability to make only authorized robots and 

institutions make updates to the model. Mechanisms of incentives were also incorporated where honest participation would 

be rewarded and malicious practice or manipulation of data would be discouraged. Smart contracts enhanced the credibility 

of collaborative training in distributed healthcare robotics through these automated processes [34]. 

 

Scalability issues were overcome by moving to an off-chain storage approach, in which most model weights were stored 

out of blockchain. Metadata, including cryptographic hashes, validation metrics, and timestamps, were stored on-chain 

only, keeping storage requirements and transaction overhead as low as possible. This hybrid network maintained the 

security benefits and immutability of blockchain without affecting the performance of the chain because of the large 

volumes of on-chain data. The decoupling of metadata and model weights enabled the scaling capabilities of the system 

even in cases where frequent federated updates among multiple robotic nodes were required [35]. 
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The addition of federated learning into blockchain frameworks gave the smart healthcare robots a tamper-resistant, 

transparent, and decentralized coordination layer. The consensus mechanism ensured update integrity, and smart contracts 

ensured automated governance and implemented secure participation. Scalability optimization was applied to make the 

blockchain layer lightweight and able to run effectively in an IoT-based healthcare setting. Together, these design decisions 

formed a strong platform to provide secure, privacy-respecting, and collaborative learning and allow healthcare robots to 

provide reliable services in delicate medical situations [36]. 

ℎ𝑘
(𝑡)

= Hash(𝑔𝑘   ∥  metadata)                                                    (5) 

Each update is securely hashed and stored immutably. Metadata like timestamp and node ID are included for traceability. 

Equation 5 guarantees tamper-resistance and trust in collaboration. 

 

Security and Privacy Mechanisms 

To enhance the level of privacy in federated learning, Differential Privacy (DP) was implemented with the purpose of 

providing extra confidentiality to the federated learning process, imparting random noise on the local model changes before 

transmission. This system guaranteed that paramount health information that was gathered by robots with IoT would not 

be degraded to common gradients or parameters. Different ε values were used to trade off between privacy and model 

accuracy, enabling experiments to assess the extent to which the utility was preserved under various privacy guarantees. 

The aspect of DP was especially applicable to healthcare robotics, where patient-specific physiological and contextual 

information needed stringent safeguards within regulatory frameworks [37]. 

 

Secure aggregation was also adopted to make sure that individual model updates exchanged by health care robots were 

kept secret, even from the central federated learning orchestrator. This method, permitting only the combined global model 

to be rebuilt, made it impossible to unveil the local updates and ensured patient information privacy. Secure derivation 

methods reduced the threat of unauthorized access or inference attacks by masking contributions upon aggregation. Such 

a protection layer was important in the distributed healthcare robotics, wherein numerous devices functioned in evolving 

and perhaps hostile situations [38]. 

 

The mechanisms of anomaly detection were integrated in order to protect the training process against the poisoning and 

adversarial attacks. AI-led models perused the incoming updates to find abnormal patterns or malicious changes that might 

worsen the performance of the whole global model. Clustering-based detection and statistical deviation analysis were used 

as techniques to segregate legitimate contribution and corrupted contribution. This made sure that the reliability of federated 

learning outcomes in healthcare robotics was not compromised by isolated compromised nodes [39]. 

 

The fusion of differential privacy, secure aggregation, and anomaly detection developed a multi-layered security 

framework for the IoT-driven healthcare robots. Although DP ensured the privacy of individual data donations, secure 

aggregation ensured privacy in the update, and anomaly detection ensured the sway of malicious nodes. These mechanisms 

combined result in increased trust, strength, and stability of the federated learning system. This integrated scheme formed 

a safe base to implement privacy-guaranteeing collaborative intelligence in intelligent healthcare robots [40]. 

𝑔̂𝑘 = 𝑔𝑘 + 𝒩(0, 𝜎2𝐼)                                                       (7) 

Noise is added to protect sensitive medical values in local updates. The variance 𝜎2 controls the trade-off between utility 

and privacy. Equation 7 prevents re-identification of individuals from shared gradients. 

𝑈 = ∑ 𝑔̂𝑘

𝐾

𝑘=1

                                                                         (8) 

Only the combined result is visible to the central server. Individual robot updates remain hidden during aggregation. 

Equation 8 ensures privacy even if the orchestrator is not fully trusted. 

𝑠𝑘 =
⟨𝑔𝑘 , 𝜇⟩

∥ 𝑔𝑘 ∥ ∥ 𝜇 ∥
                                                                   (9) 

Similarity measures detect updates that deviate from the group. Low similarity scores suggest poisoned or adversarial 

contributions. Equation 9 strengthens robustness against malicious nodes. 

 

Experimental Setup 

The simulation environment was built on Python-based frameworks, where PyTorch was chosen to be the federated model 

trained because of its flexibility when dealing with distributed learning processes. Hyperledger and Ethereum testnets were 

used to emulate blockchain functionality and offer decentralized coordination and record-keeping of model updates in an 

immutable manner. This two-layer setup allowed assessing federated learning combined with blockchain and preserving 

controlled experimental conditions that can be appropriately applied to healthcare robotics applications. 

 

The hardware setting was established to replicate the real-life organizations of the IoT-based healthcare robots. Raspberry 

Pi-class devices and virtualized containers were used to model distributed healthcare robots that have limited computational 

power as edge nodes. This configuration was indicative of the real-world limitations of IoT robotics in healthcare, such as 

energy efficiency considerations and limited storage, as well as enabled ambitious testing of federated learning performance 

under resource-constrained conditions. 
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The configuration of training entailed subdivision of the Smart Healthcare Robotics Dataset into five to ten simulated 

clients. The individual clients were self-represented healthcare robots or institutions that are locally trained to update the 

model. To achieve realistic learning cycles before global aggregation, local models were trained over 10 to 20 epochs. It 

was designed in such a way that it made it possible to study convergence behavior as well as the effect of the heterogeneous 

data distribution among more than two healthcare organizations in a federated environment. 

 

This was measured by various measures to measure the proposed framework on a holistic basis. Accuracy, precision, recall, 

F1-score, and AUC were the used measures of model performance. Communication overhead, training time, and 

blockchain transaction cost were the measures of efficiency. Resilience against membership inference, model inversion, 

and poisoning attacks was tested against privacy and security. Scalability was measured by monitoring blockchain 

throughput and federated convergence time. In combination, these indicators gave a comprehensive assessment of the 

accuracy, robustness, efficiency, and security of IoT-based smart health care robotics.  

 

Local model training at each client was performed using the PyTorch framework, with a batch size of 32, learning rate of 

0.001, and Adam optimizer. Each federated round executed 10–20 local epochs before global aggregation. Attack 

simulations were introduced by assigning 10% of clients to perform label-flipping and gradient poisoning, enabling the 

evaluation of robustness against adversarial behaviors. 

 

Table 4. Average Vitals by Activity Type 

Activity Type Heart Rate (bpm) SpO₂ (%) Temperature (°C) Respiratory Rate 

(breaths/min) 

Exercising 85.52 94.78 37.00 17.61 

Resting 82.09 94.09 36.80 17.05 

Sleeping 84.52 95.48 36.87 16.67 

Walking 84.00 93.57 36.96 16.11 

 

The correlation between physiological indicators and various states of activity was brought to focus in Table 4, which 

shows average measurements of the vital parameters, including heart rate, SpO₂, temperature, and respiratory rate of each 

type of activity. The results showed evident differences in physiological activities with the subject resting, walking, 

sleeping, and exercising. As an example, the average heart rate and respiratory rate were related to exercise, whereas resting 

and sleeping values were lower and more stable vital signs. These differences validated the use of the dataset to observe 

realistic activity-dependent physiological variations. 

 

Activity recognition models were strongly supported by the trends that were depicted in the table. Higher heart rate and 

respiratory rates when exercising developed unique patterns that could be used to distinguish exercise and other states. On 

the same note, the decreased heart rate and constant values of SpO2 levels in sleep identified the indicators distinguishing 

passive activities. Through these statistical baselines, the table warranted the application of the activity features as potent 

predictors in machine learning activities like fall detection, health risk assessment, and activity classification. 

 

The information in Table 4 also highlighted the need for contextual healthcare monitoring. As an example, a higher-than-

normal heart rate during rest or sleep may signify a health risk, whereas similar patterns across activity classes might assist 

in maximizing robotic interventions, e.g., mobility assistance during physical activities or use of vital monitoring during 

rest. Therefore, the tabulated averages did not only confirm the quality of the dataset but also reinforced its implementation 

in real-time decision-making of healthcare robotics. 

 

Validation and Analysis 

Baseline comparisons were made to determine the effectiveness of the proposed framework in relation to the present 

approaches. The system was evaluated in three scenarios, such as centralized learning, federated learning without 

blockchain, and federated learning with blockchain, though no other privacy or security measures were taken. These 

comparisons showed how integration of blockchain and enhanced privacy-preserving measures improved the situation, as 

well as showed how traditional centralized and partially secure federated strategies in healthcare robotics are constrained. 

Ablation tests have been conducted to isolate the performance of individual elements, including integration of blockchain, 

differential privacy, safe aggregation, and anomaly detection. The systematic activation and deactivation of these features 

allowed discovering their direct influence on the overall performance in the analysis. This method made it possible to 

identify important processes that enhance the robustness, accuracy, and resilience of federated learning settings. The papers 

also emphasized the performance penalties brought about by each component, which helped in giving a better picture on 

which to trade functionality and computational efficiency. 

The accuracy, privacy, and efficiency trade-offs were examined to determine the feasibility of the application in practice 

in the context of healthcare robotics being driven by IoT. Privacy-preserving methodologies like differential privacy and 

secure aggregation improved the privacy but frequently caused lower model accuracy. Equally, the integration of 

blockchains increased trust and transparency but created extra overhead in terms of computation and communication. Such 
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trade-offs were strategically considered to identify the best configuration to be used in the real-world implementation, 

where security and privacy were not going to interfere with the patient safety and system responsiveness. 

 

Recommendations were made upon the deployment of smart healthcare robotics at the end of the validation process. The 

discussion indicated that federated learning with blockchain security improvements and targeted privacy-protective 

methods offered an effective set of privacy-accuracy-efficiency-confidentiality trade-offs. The introduction of anomaly 

detection enhanced resistance to malicious updates, which guarantees the integrity of collaborative learning in distributed 

learning. These lessons provided a guideline to the deployment of secure and privacy-conscious federated learning systems 

as well as scalable ones in healthcare robotics, enabling their use in sensitive healthcare contexts. 

𝐽 = 𝛼 ⋅ Accuracy + 𝛽 ⋅ Privacy + 𝛾 ⋅ Efficiency                                     (10) 

This combines accuracy, privacy, and efficiency into one metric. Weights 𝛼, 𝛽, 𝛾 balance system priorities. Equation 10 

helps optimize real-world deployment for both safety and scalability. 

 

Result and Discussion 

 
Figure 2. Comparative Model Accuracy: Centralized vs Federated, with Blockchain and Security Mechanisms 

Figure 2 compared four training paradigms and indicated an evident upward trend in accuracy in centralized learning 

(approximately 82 percent), federated learning in the absence of security (approximately 84 percent), federated learning 

using blockchain (approximately 87 percent), and secure federated learning using blockchain (approximately 90 percent). 

These findings showed that generalization was enhanced when the training was distributed among edge nodes by utilizing 

more diverse data without losing data locality. The implementation of blockchain also increased the precision, as the 

reliability of accepted updates also increased. The most performance was provided by adding privacy and security 

mechanisms, implying that model quality improved when pollution by poisoned or low-quality contributions was 

systematically restricted. 

 

The benefit of blockchain occurred due to the ledger being scribed with the hash of the updates and timestamps, with smart 

contracts authenticating the participation and providing access control. This new system minimized the fraction of 

unverifiable or low-value gradients and discouraged adversarial behavior by reputation and incentive policies. This led to 

global aggregation getting cleaner, better-curated updates, which increased convergence stability and augmented final 

accuracy, relative to unsecured federated learning. 

 

The mechanisms of security refined the quality of updates further. Secure aggregation masked per-user updates of clients, 

making targeted inference during training impossible, and anomaly detection indicated outliers that are the result of model 

poisoning or backdoors. Despite the noise that was added by differing privacy, the experience of strong aggregation and 

adversarial filtering subsidized the cost of that noise. The system was privacy-preserving with tuned ε values and suitable 

local epochs, without sacrificing or harming prediction accuracy as compared to the blockchain-only system. 

 

The given evolution was particularly significant in the case of safety-related robotic support. More accurate results were 

more reliable fall detection, activity recognition, and health risk stratification at the edge. The integrated design was 

warranted by the accuracy gains, the ability to perform audits, and the ability to resist attacks even though privacy and 

blockchain added computational and communication overheads. Parameters such as client sample, consensus parameters, 

EPS budget, and aggregation policies may alter absolute values, but the relative ranking in Figure 2 had a common trend 

across non-IID partitions and resource-constrained nodes. 



72 J Rare Cardiovasc Dis. 

 

How to Cite this: P. Krishnamoorthy , D Raju , R Saminathan , T Kumar, Dhruva M S,  P. Vidyullatha, Secure Federated Learning for IoT-Driven Smart 

Healthcare Robots: A Blockchain and AI-ML Approach Dis. 2025;3 (S1):63–83. 

 

 
Figure 3. Privacy Leakage Risk Across Training Paradigms: Centralized, Federated, Federated + Blockchain, and Secure 

Federated + Blockchain 

 

Figure 3 showed a single directional decrease in privacy-leakage risk between centralized learning and federated learning 

with blockchain. Centralized learning was the most risky learning since patient records had been combined, forming a 

single point where they could be compromised and strong membership or attribute inference. Moving to plain federated 

learning reduced risk since raw data is maintained on devices, but still, unsecured gradients and metadata allowed clients 

to become victims of inversion and reconstruction attacks during the model exchange. 

 

There was also exposure mitigation by introducing permissioned blockchain. The cryptographic commitments, timestamps, 

and validation scores were only anchored on-chain, whereas model weights were kept off-chain. Smart contracts focused 

on authenticated participation and role-based access that restricted rogue clients and Sybil clients and minimized 

unauthorized access to update traffic. This layer of governance also offered unalterable audit logs that discouraged 

opportunistic scraping or replay of model artifacts that could increase leakage. 

 

The biggest decrease was observed when the blockchain layer was used in conjunction with the differential privacy as well 

as the secure aggregation. Differential privacy added controlled noise to client updates at a controllable ε, frustrating any 

signals of personal contribution that adversaries could use. Secure aggregation provided that the orchestrator only saw an 

encrypted sum, which would not allow the inspection of per-client gradients even by honest but curious servers. Combined, 

these mechanisms clouded micro-patterns that are attached to particular individuals and maintained the macro information 

required to support learning. 

 

Operationally, the decreasing pattern in the figure implied that privacy protection was enhanced as controls grew up the 

pipeline-data locality, authenticated coordination, and cryptographic/algorithmic protection. Whereas DP presented the use 

of stochastic perturbations and secure aggregation introduced protocol overhead, proper tuning of ε, client sampling, and 

local epochs kept model utility intact and reduced leakage risk to the lowest level across the studied configurations. The 

outcome advocated deployment conditions that required high confidentiality provisions without compromising the 

effectiveness of learning. 

Table 5. Robot Assistance Type Distribution 

Robot Assistance Type Count 

Monitoring 33 

Mobility Support 23 

Emergency Alert 22 

Medication Reminder 22 

 

Table 5 showed the allocation of the types of robot assistance attributed to various patient conditions and situations. The 

dataset revealed that the most commonly used assistance was monitoring, which constituted the majority of the records. 

This pre-eminence was tied to the need for uninterrupted monitoring of the patient, and in that case, healthcare robots 

mainly monitored vital signs, the dynamics of motion, and environmental conditions. Mobility support and medication 

reminders are other types of assistance that were less common but would be relevant in particular healthcare circumstances. 

The distribution also revealed the variety of robotic interventions and reflected the way healthcare robots were customized 

to a variety of clinical settings. As an example, emergency alerts were activated in a considerable number of cases, which 

proves the significance of real-time responsiveness in emergency health conditions. Conversely, patients who had physical 

needs were offered mobility assistance, and medication reminders were used to ensure patients had to remain with their 
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treatment. The inter-category variability highlighted the ability of the system to be flexible to adapt support as required by 

patients. 

 

This allocation had significant consequences for model development in the framework. Care was taken to balance model 

training because monitoring events dominated the dataset so as not to bias the model training towards this category. 

Simultaneously, the occurrence of emergency and mobility-related tasks provided a chance to evaluate the extent to which 

federated models were able to generalize in cases of less frequent yet highly important categories. Therefore, in addition 

to summarizing the patterns of patient-robot interaction, Table 5 distribution also informed the creation of predictive and 

optimization models of practical robotic assistance. 

 
 Figure 4. Trustworthiness of Model Updates Across Learning Paradigms: Impact of Permissioned Blockchain, 

Smart-Contract Governance, and Security Controls 

 

Figure 4 indicated a gradual increase in trustworthiness under centralized learning followed by a sharp increase with the 

introduction of a permissioned blockchain, and finally, the ledger was further enriched with security controls, which led to 

an increment in trustworthiness. Centralized training was the lowest in score due to the fact that the provenance of updates 

was still transparent and the sole aggregation location was prone to manipulation. Unsecured federated learning had a better 

score because they stored the information locally, but the lack of verifiable trails made the model update vulnerable to 

replay and manipulation. By including a permissioned ledger, the score was boosted significantly through the introduction 

of unchangeable, signed records of every contribution. The maximum score was obtained when ledgering was combined 

with cryptographic and algorithmic defenses, producing traceable and tamper-evident training cycles. 

 

The metric was an aggregated index indicating a number of audit signals: percent of updates whose cryptographic hashes 

match, percent of contributions by authenticated nodes, percent of detected inconsistent updates, percent of complete on-

chain metadata (timestamps, signatures, validation summaries), and frequency of anomaly flags. High scores under 

blockchain occurred because of trustful provenance; all clients provided a signed digest of gradients or weights, and smart 

contracts verified identity, role, and policy verification before being accepted. Duplicates or invalid submissions were 

automatically filtered, and the ledger maintained an unalterable history of accepted events, and post-hoc audits were simple. 

There were also operational mechanisms that explained the improvement. Edge nodes created local updates and hashes 

and sent metadata; the orchestrator would check signatures and put receipts on the ledger; consensus (e.g., PBFT/Raft) 

finalized blocks and blocked silent rewrites. Smart-contract policies imposed penalties on non-conforming conduct and 

aided reputation acquisition, mitigating the effects of Sybil or colluding consumers. In the case of secure aggregation that 

hid per-client gradients and anomaly detection filtered outliers, only reputable aggregate contributions affected the world 

model. Reputation-weighted aggregation followed, which highlighted the nodes that had a history of reliability, which 

would strengthen integrity on a per-round basis. 

 

Practical implications were of importance to safety-critical decision pipelines. Block interval tuning, batched commits, and 

lightweight consensus kept things responsive, although ledgering and security added overhead. Hashes and validation 

summaries based on work done by fall detection, activity recognition, and risk stratification were recorded on-chain and 

allowed the auditors to connect model gains with verifiable updates. Figure 4 showed the resulting trajectory where 

provenance immutability, authenticated participation, and layered defenses created the most reliable training process, and 

the training could be confidently deployed in environments where traceability and tamper resistance were required. 
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Figure 5. Attack Success Rates Across Training Methods and Threat Types: Poisoning vs. Adversarial Under Federated, 

Blockchain, and Anomaly-Detection Controls 

 

Figure 5 provided a clear illustration of the reduced success rates of attacks with an increment of the strength of the 

defenses. Unprotected federated learning was the most vulnerable, and the attacks of poisoning and adversarial 

manipulation were successful in about 40 percent and 30 percent of the attempts, respectively. The implementation of a 

permissioned blockchain decreased these rates to approximately 25 and 15 percent, respectively, a sign of enhanced 

provenance, authenticated participation, and unalterable logging. The best figures were observed when anomaly detection 

was paired with the ledger: poisoning was reduced to approximately 7% and adversarial attempts to approximately 3%, 

meaning that the detection and filtering of suspicious updates were important to the integrity of training. 

 

The reductions seen with the blockchain-only design came due to verifiable identities, tamper-evident update trails, and 

policy enforcement with smart contracts. These restrictions shortened replay, Sybil, and unauthorized contributions but 

made no direct analysis of the content of gradients or weights. Model-poisoning strategies keeping valid credentials were 

thus still non-trivially successful. The further drop with anomaly detection indicated that content-based screening, which 

was not limited to identity and auditability, was necessary to suppress advanced attacks that passed access checks but 

carried meanings that were malicious. 

 

The anomaly-detection layer made use of statistical and geometric properties of incoming updates before aggregation. 

Various features, including layer-wise norm distributions, cosine similarity to the cohort median, gradient sign consistency, 

and loss-based residuals, were examined to serve as flags of outliers. The contributions that were seen as suspicious either 

received a down-weight or were quarantined, and reputation scores were stored in blockchain, where habitual violations 

were recorded. Such a pipeline constrained the impact of engineered gradients common to backdoor or scaling-based 

poisoning and at the same time suppressed small, focused perturbations related to adversarial examples. 

 

Non-IID partitions of clients and resource limitations typical of edge robots were also reflected in experimental conditions 

and serve to facilitate attack effects and complicate detection. The identified trend in the heatmap showed that the greatest 

resilience was achieved when the following combinations were used: layered defenses, data locality with FL, authenticated 

coordination through blockchain, and content validation through the anomaly detection. Although privacy controls like 

differential privacy and secure aggregation are able to blur per-client cues, with prudent thresholding and strong 

aggregation, detection performance remained intact, and it was possible to reliably isolate malicious activity without 

deteriorating honest learning performance. 
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Figure 6. Communication Overhead vs. Client Scale under Optimized Aggregation: Effects of Sparsification, 

Quantization, and Periodic Local Training 

 

Figure 6 indicated that communication overhead per round increased with the number of clients, although the slopes of the 

two configurations increased at significantly different rates. Overhead increased, without optimization, by a factor of four, 

from about 50 to 240 MB (5 clients to 25 clients). It decreased to some extent, from 130 MB with optimization, as compared 

to 30 MB. The scalability of the relative savings was similar, i.e., it was approximately 40% with 5 clients (50 Mb -30 Mb), 

42 percent with 10 clients (95 Mb -55 Mb), 43 percent with 15 clients (140 Mb -80 Mb), 45 percent with 20 clients (190 

Mb -105 Mb), and 46 percent with 25 clients (240 Mb -130 Mb). The curve separation showed that optimization minimized 

the intercept and the growth rate and gave lower bandwidth needs as federation increased. 

 

The curve of best fit indicated a package of bandwidth-aware methods, that is, compressing updates prior to transmission 

and minimizing the rate and volume of exchanges. Common mechanisms were top-k sparsification of gradients (only the 

largest coordinates are transmitted), low-bit quantization (e.g., 8-/4-bit), periodic local training with E>1 epochs to amortize 

communication, and partial client participation on each round. Payloads were even more limited by delta encoding and 

update clipping. The combination of these measures reduced the number of bytes per round and maintained convergence 

in case the hyperparameters were adjusted to match model capacity and data heterogeneity. 

 

Edge clients with a tight radio and power constraint performed well with system-level impacts. Reduced payload length 

reduced uplink time, minimum retransmissions in unfriendly links, and minimum energy consumed per round. The reduced 

communication footprint also left room for security metadata (e.g., signatures, secure-aggregation masks) and blockchain 

anchoring of update receipts without violation of bandwidth constraints. Reduced latency also allowed an increased number 

of rounds to be conducted all over the network with the same network capacity, thereby making model updates available 

in time to safety-critical assistance problems. 

 

Analysis of trade-offs was still necessary. Quantization, or coarse sparsification, can slow convergence or be inaccurate 

when thresholds are too large. Periodic local training enhanced efficiency, but client drift was a threat in highly non-IID 

data; that effect was reduced by robust aggregation and periodic full-precision syncs. The optimized curve indicated a near-

linear (yet less steep) slope, indicating that the communication could easily be scaled to the number of clients (particularly 

in combination with adaptive client sampling and resource-conscious scheduling). These findings aided in the choice of 

compression rates, local epochs, and involvement rates to achieve a particular bandwidth objective and, at the same time, 

ensure that the model performance was not compromised. 

𝐶 = 𝑑 ⋅ 𝑏 ⋅ 𝐾 

The cost depends on model size, parameter bits, and node count. It reflects bandwidth required during distributed training. 

Optimizing this cost ensures feasibility for low-power robots. 

 
Table 6: Correlation Matrix of Vital Signs 

Vital Signs Heart Rate (bpm) SpO₂ (%) Temperature (°C) Respiratory Rate 

(breaths/min) 

Heart Rate (bpm) 1.000 -0.105 0.004 -0.073 

SpO₂ (%) -0.105 1.000 0.127 -0.127 

Temperature (°C) 0.004 0.127 1.000 0.152 

Respiratory Rate 

(breaths/min) 

-0.073 -0.127 0.152 1.000 
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The analysis of vital signs in Table 6 presented significant information on the interdependence of physiological processes. 

There was a low negative relationship between heart rate and SpO₂ (-0.105), showing that higher heart rates were sometimes 

accompanied by lower oxygen saturation, which is also in line with the stress or exertion scenarios. The low correlation 

indicated that these factors interacted, but in some situations, they were mainly independent in the dataset, as they 

represented a variety of patient conditions. 

 

A positive relationship was observed between temperature and respiratory rate (0.152); thus, breathing rate was slightly 

increased with a rise in body temperature, which is in line with clinical knowledge of hyperventilation caused by fever. 

Likewise, the association between SpO₂ and temperature (0.127) showed a weak positive association, with high levels of 

oxygen tending to be associated with high levels of body temperature, albeit the effect was weak. These weak associations 

highlighted how difficult the patient physiological reactions are and why multi-parameter monitoring should be used. 

The general low to moderate correlation coefficients have indicated that a single vital sign did not very strongly predict 

another, and therefore, the use of integrated machine learning models is necessary to elucidate nonlinear and complicated 

interconnections. The fact that these signals are independent further supported the soundness of the dataset to undergo 

federated training, whereby varied parameter contributions were able to improve model generalization. This discussion 

affirmed the significance of the combination of numerous vital signs to be used in the correct prediction of health risks and 

robotic assistance. 

 
Figure 7. Scalability Improvements through Blockchain-Federated Learning Integration 

 

Figure 7 showed how scalability, throughput, and latency changed with an increase in the number of nodes in a federated 

environment. In the case where blockchain integration was not used, throughput sharply decreased with an increase in 

network size, decreasing to only 40 TPS at 30 nodes compared to 180 TPS at 5 nodes. Concurrently, latency increased 

exponentially, almost to 280 ms on a larger scale. This trend showed that the established federated systems were not able 

to coordinate work among various healthcare nodes, which forced the decrease of performance and unreliable 

communication as the system was being scaled. 

 

Conversely, federated integration that was backed by blockchain maintained much higher throughput rates, which started 

at 190 TPS and reached 120 TPS even when 30 nodes were involved. The findings indicated that blockchain facilitated 

consistent involvement of more than one node, as it provided consistency in validating updates and effective recording of 

transactions. Blockchain reduced the bottlenecks associated with large-scale federated deployments, which is achieved by 

offering a decentralized trust layer. Such stabilization permitted the system to operate efficiently with increased workloads, 

which directly and positively affected real-time data exchange and multi-robot cooperation. 

 

A trend in latency also underscored the aspect of blockchain in enhancing scalability. In the absence of blockchain, the 

latency increased exponentially with the number of nodes in use, which is indicative of synchronization and verification 

bottlenecks. Nevertheless, the inclusion of blockchain kept the latency within a controlled value, and it had a moderate 

growth from 55 ms with 5 nodes to 125 ms with 30 nodes. This showed that blockchain systems like permissioned 

consensus and smart contracts reduced the communication overhead, decreased delays in federated aggregation, and 

enhanced the responsiveness in distributed decision-making processes. 
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It was generally found that blockchain integration did not only play a role in avoiding system instability but was also 

essential to facilitate large-scale federated deployments. Building more healthcare robots and institutions into the system 

and still maintaining its performance would be possible because the system maintained the throughput and minimal 

increases in the latency. This evidence highlighted the fact that blockchain-federated integration was the key to both 

scalability and robustness, which could enable secure and reliable expansion to address the needs of complex and real-

world healthcare applications. 

 
Figure 8. Resource-Aware Performance Analysis in Server and IoT Device Environments 

 

The comparative analysis presented in Figure 8 compared servers and IoT devices in terms of training time and energy 

consumed during the distributed training of models. Findings revealed that servers took 50 seconds to train, and comparable 

work took better than 120 seconds by IoT devices. This difference underscored the limitations of the computational 

capabilities of resource-constrained devices, in which reduced processing power and memory bandwidth increased the 

training time. The fact that the work with less lightweight federated algorithms and model compression algorithms provided 

a slower performance on IoT devices proved the significance of lightweight federated algorithms and model compression 

techniques to limit computation delays at the cost of reasonable accuracy. 

 

Another important observation was the trends of energy consumption. The average training of servers required 20 joules, 

whereas the same process required about 65 joules of the IoT devices. This increased energy demand was associated with 

long computation time and resource wastefulness on limited devices. The results showed that energy-sensitive optimization 

mechanisms, including adaptive update frequency and energy-saving scheduling, were to be applied to extend the device 

usability in real-time applications. Federated deployment on mobile or robotic healthcare devices can be rendered 

sustainable by circumventing power constraints and without compromising system reliability. 

 

It was also found during the analysis that despite the increased time and energy required by the IoT devices, their 

performance was still within reasonable bounds to be performed in collaborative learning. The ability to train on these 

devices demonstrated the flexibility of federated mechanisms with limited resources so that distributed healthcare 

applications could remain effective with decentralized settings. The variations among the categories of devices confirmed 

the topicality of the development of strategies of task sharing, in which computationally intense operations could be 

delegated to edge servers, whereas lightweight tasks could be addressed locally by robots with IoT capabilities. 

 

It was highlighted in Figure 8 that the balance between training efficiency and energy consumption was crucial to system 

feasibility under resource constraints. Federated structures can also expand the mesh of devices involved to a wide variety 

of devices in the IoT by adapting algorithms to accommodate constraints of the device, thereby preserving a steady level 

of network performance. This was critical in the creation of a strong and inclusive ecosystem in which both strong servers 

and weak edge devices worked together to provide scalable and trustworthy intelligent healthcare support. 
 

Table 7: Distribution of Robot Assistance Types by Activity 

Activity Type Emergency Alert Medication 

Reminder 

Mobility Support Monitoring 

Exercising 26.1% 21.7% 17.4% 34.8% 

Resting 31.8% 13.6% 22.7% 31.8% 

Sleeping 18.5% 22.2% 18.5% 40.7% 

Walking 14.3% 28.6% 32.1% 25.0% 
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Table 7 identified that the requirements of robot assistance were very different in patient activities. Patients demonstrated 

greater use of monitoring assistance (34.8%) and emergency alerts (26.1%) during exercise due to the high risk of physical 

activity or sudden medical complications. Medication reminders (21.7) and mobility support (17.4) were relatively less 

likely to be in demand, and therefore it can be argued that real-time supervision was necessary, whereas direct support 

interventions were less common in active states. This distribution also showed the significance of adaptive robotic systems, 

which put more emphasis on situational awareness when performing physically intensive tasks. 

 

The assistance needs during resting and sleeping processes were more towards monitoring functions, with resting having 

31.8 percent monitoring needs and sleeping having 40.7 percent, the highest needs. Medication reminders were also 

significant in states of sleep (22.2%), which suggests the value of scheduled interventions even when people have low 

activity levels. Mobility assistance was average during the condition of resting (22.7) and during sleeping (18.5), which 

implies the use of some assistance periodically, like adjusting the posture or repositioning. The relatively high rate of 

emergency alerts when in the resting state (31.8) highlighted that even low-exertion states may lead to health threats, and 

thus constant attention by healthcare robots is required. 

 

Mobility support (32.1) and medication reminders (28.6) were found to be the most needed activities, which can be 

discussed as the dual relevance of movement support and adherence to treatment in ambulatory conditions. Assistance with 

monitoring (25.0%) and emergency alerts (14.3) was there but relatively minor, which emphasized that walking patients 

were more served by proactive assistance than by emergency intervention. These results highlighted the necessity of a 

situation-sensitive robotic system in which the orders of assistance were dynamically ranked based on the activity patterns. 

The patient's safety, comfort, and treatment adherence would be optimized through the process of personalizing robotic 

interventions according to the recognition of real-time activities. 

 
Figure 9. Comparative Performance of Prediction Models for Fall Detection, Activity Recognition, and Health Risk 

Assessment 

 

The prediction accuracy of three key tasks—fall detection, activity recognition, and health risk prediction—is demonstrated 

in figure 9. Fall detection had the best overall performance, with an accuracy of 0.95 and a balanced precision, recall, and 

F1-score of around 0.93-0.94. This good performance indicated the ability of the model to distinguish reliably fall and non-

fall events based on physiological and contextual data. False negatives might cause unsafe situations of occurrence of a 

fall not detected, and high recall values were especially significant in the fall detection, as they might affect patient safety 

directly. 

 

Activity recognition scores a little lower, but again strong performance, with an accuracy of 0.92 and a precision, recall, 

and F1-score in the 0.90-91 range. These outcomes indicated the fact that such routine practices like resting, walking, or 

exercising could be categorized according to the given model with enough accuracy. The close similarity of all four 

measures indicated the balancing of the classifier was consistent between the detection of genuine activities and 

misclassification. This reliability was imperative to make sure that the assistance robots could adapt their behavior in real 

time depending on the current state of the patient without taking any unneeded measures. 
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The hardest task to forecast was health risks; the performance was slightly lower compared to the other two, with an 

accuracy of 0.89 and a range of 0.87 to 0.88 in the range of the precision, recall, and F1-scores. The relatively lower 

performance was due to the intrinsic complexity of multi-class classification that included heterogeneous vital signs and 

environmental variables. The findings still suggested that the model has the potential to predict different levels of patient 

risk successfully, though with continued optimization or hybrid boosting like transfer learning techniques, predictability 

could be improved. The accurate risk assessment was still important to prioritize patients to be immediately treated and 

maximize the use of resources in healthcare. 

 

The comparative analysis revealed that all three models performed well, but each of the tasks had different requirements 

in precision or focus on recall. Fall detection placed high recall as the first priority to reduce the number of undetected fall 

cases, activity recognition needed to be balanced based on various classes, and health risk prediction demanded 

sophisticated management of complex features in order to reduce misclassification. Collectively, these findings indicated 

that predictive modeling might markedly improve the outcomes of robotic assistance, providing a timely intervention, 

personalized assistance, and better patient monitoring in a distributed setting. 

 
Figure 10. Deployment Trade-Offs among Accuracy, Privacy, and Communication Efficiency under Varying Privacy 

Levels 

 

The complexity of the accuracy, efficiency, and privacy balance in using various privacy settings was emphasized by 

Figure 10. With low privacy settings, the model was found to work with the accuracy of 0.95 and the efficiency of 0.90, 

which is substantial model performance and low communication overhead. But the privacy score was much lower; it was 

0.70, which exhibited lesser protection of sensitive data. This arrangement was conducive to the system performance but 

also subjected to a risk of exposing critical patient information, and it was seen that the low privacy ensured high accuracy 

but created vulnerabilities that are not appropriate in sensitive settings. 

 

The trade-off became more equal at medium privacy. The accuracy dropped to 0.91, and efficiency dropped to 0.85, but 

the protection of privacy was significantly better at 0.85. This setup showed that privacy protection in the medium setting 

of differential privacy with controlled noise or lightweight secure aggregation could preserve good performance without 

badly compromising privacy. The relative decrease in efficiency and accuracy was offset by the significant increase in 

privacy guarantee, which makes this environment a feasible tradeoff in distributed systems that must be both trusted and 

operational. 

 

Higher privacy settings moved the balance further, with the accuracy down to 0.87, the efficiency to 0.78, and the privacy 

protection being at the greatest level at 0.95. This revealed that more privacy-sensitive systems, like high-noise differential 

privacy or intensive encryption, were more confidential but limited system performance. The accuracy drop indicated that 

sensitive features in the data set had been corrupted, whereas the efficiency drop was due to increased computational and 

communication demands. These arrangements worked quite well in highly controlled conditions but posed a risk of lower 

responsiveness and learning efficacies in real-time applications. 

 

The analysis showed that deployment had to balance itself on system objectives. The low levels of privacy were conducive 

to performance rather than protection, the medium levels of privacy were an appropriate balance of trade-off to general 

use, and the high levels of privacy were very conducive in terms of confidentiality at the expense of the operations. Such 
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findings highlighted the significance of adaptability mechanisms that dynamically changed privacy and efficiency 

configurations with regard to task urgency. In real-life deployment, a trade-off framework was flexible to allow consistent 

results of learning and preserve sensitive information in actual distributed settings. 

 
Figure 11. Client Contribution Distribution: Data Share vs. Global Model Influence across Federated IoT Nodes (with 

Privacy and Blockchain Controls) 

 

As shown in Figure 11, five clients were represented with paired bars where each node is proportional to its contribution 

to local data, and the contribution is determined by the global model. Client 4 had the most significant share of data (25), 

and its contribution to the model was almost identical (24). Client 2 has the highest contribution of 22 percent of data and 

21 percent of model impact, whereas Client 5 had a perfect alignment of 20 percent in both measures. Clients 1 and 3 

(smaller datasets of 18 and 15 percent) produced a very little bit higher model contribution (19 and 16 percent). The general 

trend was near proportionality, which implied that aggregation was fair to clients, and the slight violations could be 

explained by the quality of data and the composition of classes. 

 

These deviations were predicted with non-IID conditions. Nodes with rarer yet clinically significant events (e.g., falls or 

critical vitals) would have a marginal utility that was outsized, such that it would be better in the overall goal than the raw 

volume would have indicated. On the other hand, the relative impact of more redundant sample clients was mildly reduced. 

Validation deltas were used to obtain contribution estimates on a common holdout; hence, label noise, sensor variance, and 

temporal coverage (timestamps across activity cycles) all contributed to the observed spread. Differential privacy noise 

and the robust aggregation dampened extreme effects in a subtle manner and contributed to making the training more stable 

without eliminating the real signal among smaller yet more varied clients. 

 

Contributions were also influenced by security and governance mechanisms. Protecting aggregation in the context of per-

client updates was not denied but allowed aggregate performance effects to be computed. Anomaly detection weights 

suspicious gradients down, and so the poisoned nodes do not inflate the apparent utility. The permissioned blockchain 

stored hashed updates and per-round validation summaries, which allowed attributing impact over time in an auditable 

manner. The incentive rules that smart contracts would have enforced, that is, rewarding clients based on proven 

contribution, punishing recurring anomalies, and limiting domination, would have ensured that cooperative behavior would 

be enforced even in the premise of heterogeneous data holdings. 

 

The distribution informed the policies of scheduling and fairness operationally. Adaptive client sampling was used to 

prioritize underrepresented cohorts to balance the coverage of classes during subsequent rounds. The fairness constraints 

in weighted FedAvg reduced over-representation by a single, rich node, and regular full-precision synchronizations reduced 

drift due to compression and privacy measures. The close proportionality of allocation of influence across clients was a 

sign of the system assigning influence in proportion to useful information, rather than the volume of data, to equitable 

rewarding, effective bandwidth budgeting, and reliable model evolution in a resource-constrained federated environment. 
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Limitations and Future Work 
The framework was good but had some shortcomings. 

First, privacy-preserving methods, including differential 

privacy and secure aggregation, increased the model 

accuracy on particular tasks, albeit by a small margin due 

to the computational overhead. Second, blockchain 

interfaces added both latency and increased energy 

usage, which can limit application to devices with the 

most resource-constrained IoT. Third, the dataset was 

not large enough and might not be representative of 

highly heterogeneous healthcare settings. Also, the use 

of anomaly detection models is effective but might fail 

to identify very advanced adversarial tactics. Last, the 

simulations were performed within a simulated setting, 

and large-scale real-world implementation is yet to be 

confirmed. 

 

The limitations are to be addressed in the future by 

means of sophisticated optimization and new 

technologies. It is possible to investigate quantum-safe 

cryptography in order to equip the system for future 

cryptographic threats. Urgent need:6G-enabled ultra-

reliable low-latency communication (URLLC) could be 

greatly effective to improve real-time operation of 

healthcare robots. The addition of neuromorphic 

computing and AI accelerators can save the 

computational load of the federated learning and 

blockchain operation on the IoT devices. 

Generalizability in other health care settings will be 

enhanced by expanding the data with bigger and more 

varied populations of patients. Digital twins can also be 

incorporated to simulate healthcare situations to make 

the robot intervention a safer technique. Lastly, 

architectures of hybrid blockchain-edge must be 

explored to trade off scalability, privacy, and efficiency 

in practical multi-institutional healthcare networks. 

 

Conclusion 
The presented work was a thorough framework 

integrating federated learning, blockchain, and 

optimization with AI to increase the reliability, security, 

and efficiency of healthcare robotics. Through federated 

learning, predictive models would be trained 

simultaneously using distributed IoT-enabled data 

without infringing patient confidentiality, thereby 

ensuring data locality without interfering with the 

correct identification of activities, predicting health 

risks, fall prevention, and optimizing assistance. 

Integration of blockchain created a trust layer that is 

unchangeable, maintaining a safe track of model 

changes, and accessing data through smart contracts 

providing transparency, as well as consensus-considered 

validation to block tampering and malicious agent 

involvement. Confidentiality was further reinforced by 

privacy-preserving mechanisms such as differential 

privacy and secure aggregation, and it was demonstrated 

that AI-driven anomaly detection models were also 

effective in mitigating vulnerabilities to poisoning 

attacks and adversarial updates. 

 

The usefulness of the framework was verified through 

experimental assessments on a real-world dataset and 

showed that it provides competitive model accuracy, 

minimized communication overhead, scalability to 

resource-constrained situations, and resilience to attacks 

on a system. The trade-off analysis demonstrated the 

trade-off between accuracy, privacy, and efficiency and 

provided realistic suggestions to be implemented for a 

practical use of the IoT-driven healthcare setting. The 

framework dealt with technical and security issues 

related to the deployment of healthcare robotics on a 

large scale by incorporating lightweight blockchain 

protocols, resource-aware federated strategies, and 

adaptive AI techniques. 

 

In general, the research proved a scalable and reliable 

roadmap that permits safe real-time monitoring of 

patients and robotic assistance, opening the way to the 

next-generation smart healthcare systems. The future 

trajectories can be further led to quantum-safe 

cryptography, 6G-based ultra-reliable communications, 

and the integration of digital twins to further advance 

secure and adaptive healthcare robotics. 
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