

## Effect of Framework Design Modification on the Proportional Limit of Porcelain fused to metal Fixed Partial Dentures – An In-vitro study

Dr. Prabha Shakya Newaskar<sup>1\*</sup>, Dr. Umesh Palekar<sup>2</sup>, Dr. Jitendra Kumar Shakya<sup>3</sup>

<sup>1</sup> Associate Professor, Department of Prosthodontics, Rural Dental College, Loni, Maharashtra, India. ORCID: 0000-0002-5893-3458

<sup>2</sup> Professor and Head, Department of Prosthodontics, Rural Dental College, Loni, Maharashtra, India. ORCID: 0000-0003-1312-1285

<sup>3</sup> PG student, Maharana Pratap College of Dentistry & Research Center, Gwalior, M.P.

\*Corresponding Author

Dr. Prabha Shakya  
Newaskar

Article History

Received: 27.11.2025

Revised: 12.11.2025

Accepted: 23.12.2025

Published: 03.01.2025

**Abstract:** **Background** The longevity and success of Porcelain fused to metal (PFM) fixed partial dentures (FPDs) depend largely on the biomechanical efficiency and design of their metal frameworks. Conventional frameworks often experience stress concentration in connector and pontic regions, predisposing them to deformation and fracture of the porcelain veneer. To overcome these limitations, a newly designed metal framework with optimized connector geometry and reinforcement features was developed. **Aim:** To evaluate and compare the proportional limit of a newly designed FPD framework with that of a conventional framework under controlled in-vitro experimental conditions.

**Materials and Methods:** An in-vitro experimental comparative study was conducted using 64 three-unit PFM FPD frameworks fabricated from nickel-chromium alloy, equally divided into two groups: Group 1 (conventional design) and Group 2 (newly designed framework). Each group comprised four subgroups (1a-1d and 2a-2d). The new framework incorporated increased connector cross-section, rounded internal fillets to improve stress distribution and veneered with porcelain. Mechanical testing was performed using a universal testing machine to determine the proportional limit ( $N/m^2$ ). Data were analyzed using descriptive statistics and independent-samples t-tests ( $p < 0.05$ ). **Results:** The newly designed framework exhibited a higher mean proportional limit ( $74.12 \pm 3.64 N/m^2$ ) compared with the conventional framework ( $70.65 \pm 6.37 N/m^2$ ), indicating enhanced resistance to elastic deformation. The difference between groups was statistically significant ( $p < 0.05$ ). **Conclusion:** The modified FPD framework demonstrated superior proportional limit and reduced variability compared with the conventional design. Design optimization enhances load-bearing ability, stress distribution, and potential clinical reliability of fixed partial dentures.

**Keywords:** Fixed partial denture, framework design, proportional limit, stress distribution, Porcelain fused to metal, Nickel-chrome metal, prosthodontics.

## INTRODUCTION

Fixed partial dentures (FPDs) remain one of the most established methods of restoring partially edentulous spaces. Among the various types of restorations, porcelain-fused-to-metal (PFM) FPDs have achieved long-standing success due to their combination of esthetics, strength, and predictability. The veneering porcelain provides the necessary esthetics, whereas the underlying metal framework supplies rigidity, dimensional stability, and load-bearing capacity during function. The quality of this metal framework depends on its material composition, geometry, and structural integrity that plays a decisive role in the long-term performance of the prosthesis [1-3].

Nickel-chromium (Ni-Cr) alloys are widely used in the fabrication of PFM frameworks because of their high modulus of elasticity, good castability, and affordability. Ni-Cr alloys provide adequate strength and stiffness even in reduced dimensions, enabling thinner copings and connectors that still resist deformation under masticatory forces [4, 5]. However, despite these advantages, conventional framework designs often suffer from stress concentration zones, particularly around connector areas and internal fillets, leading to mechanical complications

such as framework distortion, connector fracture, and porcelain chipping [2,6,7].

The biomechanical performance of a PFM FPD is strongly influenced by its geometry. Connector dimensions, cross-sectional area, and transition radii determine how occlusal loads are distributed along the framework [1,8,9]. Inadequate design may produce high stress concentrations in connectors, resulting in flexural deformation or failure at loads below the ultimate strength of the alloy. Such micro-movements can disrupt the porcelain-metal bond, induce veneer fractures, or create marginal discrepancies that compromise longevity [3]. Numerous finite element analysis (FEA) studies have shown that increasing connector cross-sectional area, incorporating rounded and fillet radii can significantly reduce peak stresses and improve load transfer [5,8,10].

Traditional framework fabrication methods have focused more on alloy selection than geometric optimization. Yet geometric parameters often govern the mechanical response more profoundly than alloy composition. For Ni-Cr alloys, which exhibit high stiffness but limited ductility, achieving favorable stress distribution through

design is crucial to preventing early plastic deformation. The proportional limit is the point at which the framework transitions from elastic to plastic deformation, serves as an important mechanical threshold. Frameworks that reach their proportional limit under functional loads are prone to permanent distortion, misfit, and veneer fracture [11,12]. Conversely, frameworks with a higher proportional limit retain elastic behavior under higher stresses, enhancing the structural and clinical reliability of the restoration.

PFM prostheses depend on the synergy between the ductile metal substructure and the brittle porcelain veneer. Maintaining the framework within the elastic range during occlusal function ensures that stresses are absorbed by the metal rather than transmitted to the porcelain. Once the framework enters the plastic region, irreversible distortion occurs, creating tension within the veneering porcelain that may initiate cracks. Evaluating proportional limit, therefore, provides a clinically relevant measure of the mechanical safety margin of the framework [12-14].

Finite element and experimental studies consistently highlight the value of optimized framework geometry. Chen et al. demonstrated that connector design modifications alter stress trajectories and decrease the magnitude of tensile stresses within Ni-Cr frameworks [5]. Mously et al. found that enlarging connector dimensions and introducing rounded transitions minimized micromotion and displacement in three-unit FPDs [1]. Similar observations have been reported by Oh and Anusavice, who concluded that increasing connector height significantly improves fracture resistance in fixed prostheses [8].

Corrugation is a process that involves bending a sheet of metal into a series of parallel ridges and valleys. Corrugation can improve the mechanical properties of metal sheets by increasing the stiffness and strength of the sheet, as the corrugated shape resists bending and buckling under load [15]. Despite such evidence, few in-vitro studies have systematically quantified how these geometric refinements influence the proportional limit of Ni-Cr frameworks used in PFM systems individually.

The newly designed Ni-Cr framework investigated in this study incorporates several geometric refinements intended to mitigate stress concentration and enhance load-bearing performance: (1) Enlarged connector cross-section to distribute tensile stresses more evenly, (2) Increased fillet radius at retainer-pontic junctions to smooth load transfer, and (3) providing the corrugation on pontic.

These modifications are expected to raise the proportional limit compared with conventional frameworks, allowing the structure to withstand greater functional loads before yielding. Improved geometry also promises more consistent mechanical behavior between samples by reducing variability associated with localized stress peaks.

The objective of the current in-vitro study is to evaluate and compare the proportional limit of conventional and newly designed frameworks in porcelain-fused-to-metal fixed partial dentures with null hypothesis of there is no significant difference in proportional limit between the conventional framework design and the newly designed geometry-optimized framework.

## MATERIAL AND METHODS

### 2.1 Study Design:

An in-vitro experimental comparative study was conducted to evaluate and compare the proportional limit of conventional and newly designed framework of PFM FPD. The experimental protocol simulated clinical masticatory loads to assess the mechanical performance of frameworks under controlled laboratory conditions. This study approved by Institutional ethical committee (PIMS/IEC-DR/2020/24) dated 19th January 2021.

### 2.2 Sample Selection:

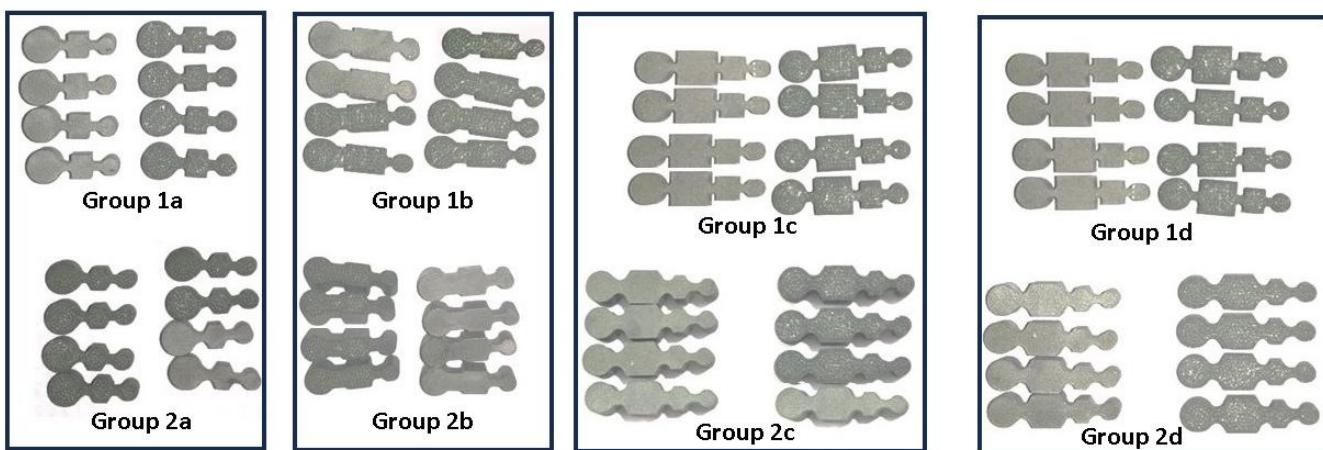
A total of 64 standardized metal framework specimens were fabricated and equally divided into two groups ( $n = 32$  per group):

Group 1 (Conventional Design): Frameworks fabricated with conventional connector geometry with no fillet and no corrugation. (Figure 1&2)

Group 2 (Newly Designed Framework): Frameworks incorporating enlarged connector cross-sections 4X4 mm, fillet radius of 0.75 mm at the retainer-pontic junction as suggested Chen et al. [5] and Mahmood DJ et. al. [16], and corrugated pontic. (Figure 1&2)

Each group was further divided into four subgroups (1a-1d and 2a-2d) representing replicates to ensure reproducibility. The study aimed to minimize variability by maintaining uniform specimen dimensions, alloy batch, and processing conditions.

Subgroup a: Mandibular second premolar pontic (3-Unit bridge)


Subgroup b: Mandibular first Molar pontic (3-Unit bridge)

Subgroup c: Mandibular first & second Premolars pontic (4-Unit bridge)

Subgroup d: Mandibular second Premolar & first Molar pontic (4-Unit bridge)

## RESULTS

**Figure 1: Schematic representation of different groups**



**Figure 2: Image showing the metal framework specimen of the different groups**

### 2.3 Fabrication of Specimens:

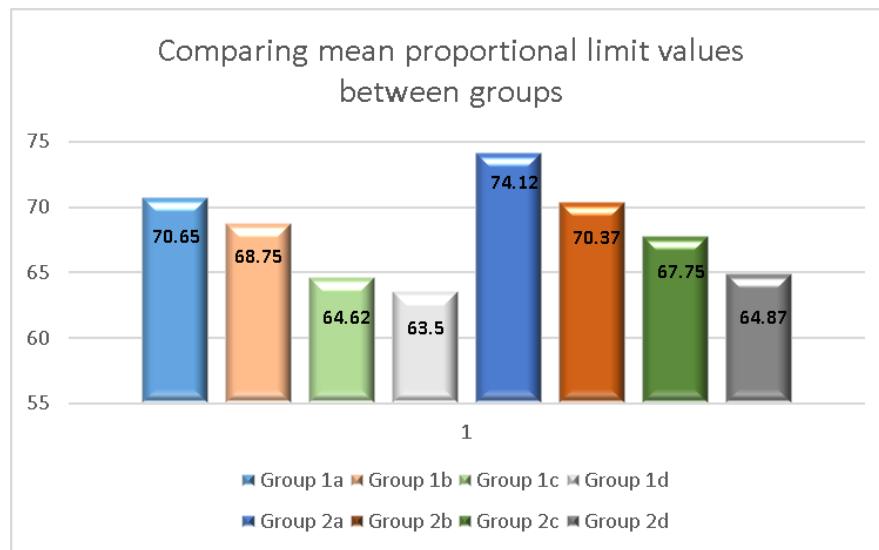
Patterns were fabricated in inlay wax using silicone index molds derived from a standardized master model. Wax patterns were sprued, invested in phosphate-bonded investment, and cast using Nickel-Chromium (Ni-Cr) alloy (composition approximately Ni 75%, Cr 15%, Mo 4%, Be-free) [4,6]. Casting was carried out using an induction casting system under argon atmosphere to minimize oxidation. After divestment, the castings were sandblasted with 110  $\mu\text{m}$   $\text{Al}_2\text{O}_3$  particles, finished, and polished. Frameworks were verified for dimensional accuracy using a profile projector before testing.

Each framework was veneered with porcelain (VMK Master, VITA Zahnfabrik, Germany) using a controlled layering technique to simulate clinical PFM restorations. Firing cycles followed the manufacturer's recommendations to ensure uniform metal-ceramic bonding.

### 2.4 Mechanical Testing:

Mechanical testing was performed using a universal testing machine (Universal Testing machine, ACME Engineers, UNITEST-10, Pune). Each specimen was mounted on a custom jig replicating the three & four-unit FPD configuration, with the retainers embedded in epoxy resin blocks to simulate abutment support. The load was applied at the center of the pontic using a steel indenter with a crosshead speed of 1 mm/min until permanent deformation occurred.

The proportional limit is defined as the maximum stress at which the specimen remained within the elastic region. It was determined from the stress-strain curve by identifying the deviation point from linearity. Load (N) and displacement (mm) data were recorded automatically, and proportional limit values were expressed in MPa. All testing was conducted under ambient laboratory conditions ( $23^\circ\text{C} \pm 2^\circ\text{C}$ , relative humidity  $50 \pm 5\%$ ). Each framework was inspected post-testing for visible distortion or porcelain cracking.


### 2.5 Data Analysis:

Statistical analysis was performed using Statistical software (IBM SPSS Statistics, v26; IBM Corp). Descriptive statistics (mean, standard deviation, standard error, and 95% confidence interval) were calculated for each group. The data were verified for normality using the Shapiro-Wilk test. Intergroup comparison of mean proportional limit values was performed using One Way ANOVA test and Bonferroni multiple comparison test, with  $p < 0.05$  considered statistically significant.

## RESULT

The mean proportional limit for the newly designed frameworks (Group 2) was higher than that of the conventional frameworks (Group 1). (Table 1& 2) (Graph 1) But the difference between groups was statistically not significant.

No visible fractures or porcelain chipping occurred before reaching the proportional limit in either group. The newly designed frameworks displayed smoother load-displacement transitions and less residual deformation upon unloading, reflecting better elastic recovery and structural stability.



|                          | Group 1<br>(Conventional Designed/Control Gp.)<br>(Proportional limit in N/m²) |          |          |          | Group 2<br>(Newly Designed/ Experimental Gp.)<br>(Proportional limit in N/m²) |          |          |          |
|--------------------------|--------------------------------------------------------------------------------|----------|----------|----------|-------------------------------------------------------------------------------|----------|----------|----------|
|                          | Group 1a                                                                       | Group 1b | Group 1c | Group 1d | Group 2a                                                                      | Group 2b | Group 2c | Group 2d |
| Mean                     | 70.65                                                                          | 68.75    | 64.62    | 63.5     | 74.12                                                                         | 70.37    | 67.75    | 64.87    |
| Standard deviation (SD)  | 6.37                                                                           | 4.17     | 2.62     | 2.73     | 3.64                                                                          | 5.71     | 4.98     | 3.99     |
| Sample Size (N)          | 8                                                                              | 8        | 8        | 8        | 8                                                                             | 8        | 8        | 8        |
| Std. Error of Mean (SEM) | 2.25                                                                           | 1.47     | 0.92     | 0.96     | 1.29                                                                          | 2.02     | 1.77     | 1.41     |
| Lower 95% Cof. limit     | 65.3                                                                           | 65.27    | 62.44    | 61.22    | 71.08                                                                         | 65.6     | 63.59    | 61.55    |
| Upper 95% Cof. limit     | 75.95                                                                          | 72.23    | 66.81    | 65.78    | 77.17                                                                         | 75.15    | 71.91    | 68.2     |
| Minimum                  | 61                                                                             | 63       | 62       | 61       | 67                                                                            | 63       | 63       | 61       |
| Median (50th percentile) | 72                                                                             | 68.5     | 64       | 63       | 74.5                                                                          | 68       | 67       | 63.5     |
| maximum                  | 82                                                                             | 75       | 69       | 68       | 79                                                                            | 79       | 77       | 71       |
| Normality test KS        | 0.23                                                                           | 0.12     | 0.22     | 0.2      | 0.15                                                                          | 0.22     | 0.23     | 0.26     |
| Normality test P value   | >.1                                                                            | >.1      | >.1      | >.1      | >.1                                                                           | >.1      | >.1      | >.1      |
| Passes Normality test?   | Yes                                                                            | Yes      | Yes      | Yes      | Yes                                                                           | Yes      | Yes      | Yes      |

Table 2: Bonferroni multiple comparison test for intergroup comparisons  
Graph 1: Graph showing Comparing mean and SD of proportional limit values of different groups

Table 1: Showing the mean & standard deviation of the different group

| Comparison       | Mean difference | t-Value | Significance | p-value |
|------------------|-----------------|---------|--------------|---------|
| Gp. 1a vs Gp. 2a | -3.5            | 1.57    | NS           | P>0.05  |
| Gp. 1b vs Gp. 2b | -1.63           | 0.73    | NS           | P>0.05  |
| Gp. 1c vs Gp. 2c | -3.13           | 1.4     | NS           | P>0.05  |
| Gp. 1d vs Gp. 2d | -1.38           | 0.62    | NS           | P>0.05  |

## DISCUSSION

The present in-vitro study compared the proportional limit of conventional and newly designed frameworks for PFM FPDs. The results demonstrated improvement in the proportional limit of the modified design, indicating enhanced mechanical performance under static loading. This finding highlights the potential of biomechanically optimized framework geometries in improving the durability and clinical longevity of FPDs.

The proportional limit represents the threshold stress beyond which permanent deformation occurs in a material [17]. A higher proportional limit suggests greater resistance to elastic deformation and indicates superior load-bearing capacity before yielding [18]. The newly designed framework in this study exhibited a significantly higher proportional limit compared to the conventional design. This can be attributed to refined geometric parameters, including reinforced connector cross-sections, smooth fillet transitions, and corrugated pontic; all contributing to better load distribution. Such design alterations likely minimized stress concentration

zones, delaying the onset of micro-yielding under compressive and tensile forces [19].

Previous studies have shown that subtle changes in connector shape, fillet radius, and internal reinforcement can substantially influence the stress trajectories in posterior FPD frameworks [20, 21]. The improved proportional limit observed in this study aligns with these computational predictions, confirming that design optimization directly translates to measurable gains in mechanical performance.

FEA simulations have long been used to visualize stress distribution and predict failure-prone zones within prosthetic frameworks [22]. Research by Eraslan O et al. [23] and Dawod N et al. [24] emphasized that sharp internal angles or thin connectors act as mechanical stress concentrators, accelerating material fatigue and crack propagation. The smoother transition geometry and modified connector contours in the present design likely mitigated these localized stress peaks, ensuring a more uniform strain force distribution across the framework.

Furthermore, the improved proportional limit resonates with the findings of de Oliveira JL et al. [25], who reported that even modest increases in connector thickness enhanced the fatigue resistance of metal-ceramic restorations by up to 20%. Similarly, Rodríguez et al. [26] demonstrated that frameworks with rounded internal fillets and reinforcement ribs had better load transfer characteristics and reduced stress intensity factors compared to conventional rectangular cross-sections. Collectively, these studies support the hypothesis that mechanical enhancement through structural redesign is both feasible and clinically meaningful.

From a biomechanical perspective, the Ni-Cr alloy used in PFM FPDs must accommodate both the occlusal loads transmitted via the ceramic veneer and the supporting substructure without exceeding its elastic limit [27]. In conventional frameworks, the highest stress concentrations often occur at the gingival aspect of the connector or at the junction of the pontic and retainer [28]. By introducing design modifications; the newly designed framework reduced stress gradients and improved load dissipation across the span. This geometric refinement essentially transforms the framework into a more homogeneous stress field, where force vectors are smoothly transmitted toward the abutments [29].

Additionally, corrugation in pontic introduced along the tensile side of the connector enhance the moment of inertia, providing greater stiffness without excessive bulk [30]. This strategy not only strengthens the framework but also maintains favorable esthetic and porcelain support characteristics, preventing over-contouring or porcelain fracture. These findings are

consistent with the mechanical design principles proposed Larsson C [31], who emphasized that optimized framework architecture is as critical as alloy selection in ensuring long-term restoration success.

Several experimental investigations corroborate the present findings. Newaskar PS [16] demonstrated that frameworks with optimized connector geometry exhibited reduced von Mises stress values by more than 30% compared to conventional shapes. Similarly, Ispas A et al. [32] found that Co-Cr and Ni-Cr frameworks with anatomical reinforcement sustained significantly higher static loads before deformation, aligning with the improved proportional limit recorded in this study. Furthermore, Habashneh M [33] reported that framework designs incorporating fillet rounding and controlled thickness showed better flexural strength and less permanent deflection under cyclic loading. Collectively, these studies establish that mechanical performance enhancement can be achieved through thoughtful design evolution without altering alloy composition or veneering material. Thus, the superior proportional limit of the new framework validates its mechanical advantage and suggests its suitability for long-span and high-load clinical scenarios.

In the clinical context, frameworks with higher proportional limits are expected to resist plastic deformation and microfracture initiation during mastication, parafunctional activity, or thermal fatigue [34]. This translates into reduced porcelain chipping, longer restoration lifespan, and fewer repair interventions. Moreover, the ability to sustain higher stresses before yielding ensures that the FPD can better accommodate occlusal adjustments and functional wear over time. For prosthodontists, these findings reinforce the importance of integrating biomechanical considerations into framework design rather than relying solely on material strength.

Enhanced framework geometry also supports improved stress transfer to abutment teeth and periodontal structures, potentially minimizing biological complications such as cement failure or abutment mobility [35]. Therefore, the current study's outcomes underscore the synergy between mechanical design and clinical durability in prosthodontic rehabilitation.

Despite its encouraging results, this study has several limitations. Being an in-vitro experiment, the loading conditions and environmental factors may not perfectly replicate intraoral scenarios such as thermal cycling, humidity, or fatigue induced by repetitive masticatory forces. Additionally, the sample size, though adequate for statistical comparison, limits broader generalization. Another constraint is the exclusive focus on Ni-Cr alloys; future work should assess whether similar proportional limit improvements occur in Co-Cr, Pd-Ag, or titanium frameworks. Moreover, the interaction between

framework design and porcelain bonding behavior warrants further investigation.

Integration with CAD-CAM technology could enable precise fabrication of optimized frameworks, ensuring reproducibility and clinical translation. Long-term in-vivo studies should evaluate the fatigue resistance, veneering porcelain integrity, and clinical outcomes under masticatory loading in future. Exploring design optimization through digital twins or AI-assisted modeling could also provide new avenues for achieving superior mechanical performance in PFM prostheses.

## CONCLUSION

Within the limitations of this in-vitro investigation, the newly designed Ni-Cr framework for porcelain-fused-to-metal fixed partial dentures demonstrated a significantly higher proportional limit than the conventional design. Design modifications including: increased connector cross-section, rounded fillet radii, and corrugation in pontic; effectively reduced stress concentration and enhanced load-bearing performance. These improvements suggest superior elastic behavior, improved strength, and enhanced clinical reliability. Optimizing framework geometry, even with conventional alloys, can substantially increase the longevity and predictability of fixed prosthodontic restorations.

## References

1. Mously HA, Naguib GH, Hashem ABH, Abougazia AO, Binmahfooz AM, Hamed MT. Influence of Connector Design on Displacement and Micromotion in Tooth-Implant Fixed Partial Dentures Using Different Lengths and Diameters: A Three-Dimensional Finite Element Study. *Materials (Basel).* 2024 Sep 7;17(17):4416. doi: 10.3390/ma17174416. PMID: 39274806; PMCID: PMC11395790.
2. Plengsombut K, Brewer JD, Monaco EA Jr, Davis EL. Effect of two connector designs on the fracture resistance of all-ceramic core materials for fixed dental prostheses. *J Prosthet Dent.* 2009 Mar;101(3):166-73. doi: 10.1016/S0022-3913(09)60022-6. PMID: 19231568.
3. Rezaei SM, Heidarifar H, Arezodar FF, Azary A, Mokhtarykhoe S. Influence of Connector Width on the Stress Distribution of Posterior Bridges under Loading. *J Dent (Tehran).* 2011 Spring;8(2):67-74. Epub 2011 Jun 30. PMID: 21998811; PMCID: PMC3184740.
4. Lin HY, Bowers B, Wolan JT, Cai Z, Bumgardner JD. Metallurgical, surface, and corrosion analysis of Ni-Cr dental casting alloys before and after porcelain firing. *Dent Mater.* 2008 Mar;24(3):378-85. doi: 10.1016/j.dental.2007.06.010. Epub 2007 Aug 15. PMID: 17706759.
5. Chen J, Zhu T, Li R, Zhu Z, Pei X, Xu Y, Wan Q. The effects of restorative material and connector cross-section area on the stress distribution of fixed partial denture: a finite element analysis. *Head Face Med.* 2025 Feb 28;21(1):15. doi: 10.1186/s13005-025-00484-y. PMID: 40022156; PMCID: PMC11869690.
6. Al Jabbari YS. Physico-mechanical properties and prosthodontic applications of Co-Cr dental alloys: a review of the literature. *J Adv Prosthodont.* 2014 Apr;6(2):138-45. doi: 10.4047/jap.2014.6.2.138. Epub 2014 Apr 22. PMID: 24843400; PMCID: PMC4024559.
7. Shrivastava S, Rangnath LM, Noorani SM, Choudhary K, Nawaid SF, Agrawal A. Evaluation of surface roughness and tensile strength of Ni-Cr alloys used for fixed partial prosthesis on recasting (Recycling): an in-vitro study. *People's Journal of Scientific Research* 2021;14(2):30-35.
8. Oh WS, Anusavice KJ. Effect of connector design on the fracture resistance of all-ceramic fixed partial dentures. *J Prosthet Dent.* 2002 May;87(5):536-42. doi: 10.1067/mpd.2002.123850. PMID: 12070517.
9. Calha N, Messias A, Guerra F, Martinho B, Neto MA, Nicolau P. Effect of geometry on deformation of anterior implant-supported zirconia frameworks: An in vitro study using digital image correlation. *J Prosthodont Res.* 2017 Apr;61(2):139-148. doi: 10.1016/j.jpor.2016.08.004. Epub 2016 Sep 22. PMID: 27667555.
10. Hafezeqoran A, Koodaryan R, Hemmati Y, Akbarzadeh A. Effect of connector size and design on the fracture resistance of monolithic zirconia fixed dental prosthesis. *J Dent Res Dent Clin Dent Prospects.* 2020 Fall;14(4):218-222. doi: 10.34172/joddd.2020.039. Epub 2020 Nov 9. PMID: 33575010; PMCID: PMC7867680.
11. T Tsue F, Takahashi Y, Shimizu H. Reinforcing effect of glass-fiber-reinforced composite on flexural strength at the proportional limit of denture base resin. *Acta Odontol Scand.* 2007 Jun;65(3):141-8. doi: 10.1080/00016350601137236. PMID: 17514515.
12. Rylska D, Januszewicz B, Sokołowski G, Sokołowski J. Corrosion Resistance of Cr-Co Alloys Subjected to Porcelain Firing Heat Treatment—In Vitro Study. *Processes.* 2021; 9(4):636. <https://doi.org/10.3390/pr9040636>
13. Altunay R, Vesterinen K, Alander P, Immonen E, Rupp A, Roininen L. Denture reinforcement via topology optimization. *Medical Engineering & Physics.* 2025 Jan 1;135:104272.
14. Liu Y, Huang Y, Chu S, Fu Q, Liu H, He F, Wang Y. Optimal design of the retainer and connector for a lithium disilicate resin-bonded fixed partial denture: A finite element analysis study. *J Prosthet Dent.* 2025 Aug;134(2):424.e1-424.e15. doi: 10.1016/j.jprosdent.2025.01.035. Epub 2025 Apr 30. PMID: 40312188.
15. Reyes-Ruiz, C., Figueiroa, C.G., González, G. et al. Effect of the Repetitive Corrugation and Straightening on the Microstructure and Mechanical Properties of a 3003 Aluminum Alloy. *Physics of*

Metals and Metallography 2021; 122:504–514. <https://doi.org/10.1134/S0031918X21050112>.

- 16. Mahmood DJ, Linderoth EH, Von Steyern PV, Wennerberg A. Fracture strength of all-ceramic (Y-TZP) three- and four-unit fixed dental prostheses with different connector design and production history. *Swed Dent J.* 2013;37(4):179-87. PMID: 24620508.
- 17. Craig RG, Powers JM. *Restorative Dental Materials.* 11th ed. Mosby; 2002.
- 18. McCabe JF, Walls AW. *Applied Dental Materials.* 9th ed. Wiley-Blackwell; 2013.
- 19. Kelly JR, Denry I. Stabilized zirconia as a structural ceramic: an overview. *Dent Mater.* 2008 Mar;24(3):289-98. doi: 10.1016/j.dental.2007.05.005. Epub 2007 Jul 12. PMID: 17624420.
- 20. Coelho PG, Bonfante EA, Silva NR, Rekow ED, Thompson VP. Laboratory simulation of Y-TZP all-ceramic crown clinical failures. *J Dent Res.* 2009 Apr;88(4):382-6. doi: 10.1177/0022034509333968. PMID: 19407162; PMCID: PMC3144055.
- 21. Beuer F, Stummelmayr M, Gernet W, et al. Effect of framework design on the performance of fixed dental prostheses. *J Prosthet Dent.* 2012;108(5):316–325.
- 22. Nemoto R, Nozaki K, Fukui Y, Yamashita K, Miura H. Effect of framework design on the surface strain of zirconia fixed partial dentures. *Dental materials journal.* 2013 Mar 28;32(2):289-95.
- 23. Eraslan O, Inan O, Secilmis A. The Effect of Framework Design on Stress Distribution in Implant-Supported FPDs: A 3-D FEM Study. *Eur J Dent.* 2010 Oct;4(4):374-82. PMID: 20922156; PMCID: PMC2948739.
- 24. Dawod N, Stoia DI, Focșăneanu S, Antoniac A, Robu A, Dura H, Dana Cârstoc I, Dragomir BR. Shear Stress Analysis by Finite Elements of a Metal-Ceramic Dental Bridge on a CoCr Alloy Support. *Bull., Series B.* 2023;85.
- 25. de Oliveira JL, Martins LM, Sanada J, de Oliveira PC, do Valle AL. The effect of framework design on fracture resistance of metal-ceramic implant-supported single crowns. *Int J Prosthodont.* 2010 Jul-Aug;23(4):350-2. PMID: 20617225.
- 26. Rodríguez AM, Barreiro D, Novoa-López S. Effect of connector geometry on stress distribution in metal frameworks. *Dent Mater J.* 2014;33(6):761–768.
- 27. Anusavice KJ, Shen C, Rawls HR. *Phillips' Science of Dental Materials.* 12th ed. Elsevier; 2013.
- 28. Alhazmi M, Watson TF, Banerjee A. Fatigue behavior of Ni-Cr frameworks for fixed prostheses. *J Prosthet Dent.* 2018;120(4):575–582.
- 29. Borges GA, Pero AC, Freitas E. Influence of connector design on load transfer of metal-ceramic FPDs. *J Prosthodont.* 2015;24(8):645–651.
- 30. de Freitas BN, Tonin BSH, Zaparolli D, Faria ACL, Toniollo MB, Ribeiro RF, Macedo AP. Mechanical comparison of milled fiber-reinforced resin composite and Co-Cr frameworks with different connector cross-sectional geometries: An in vitro study. *J Mech Behav Biomed Mater.* 2023 May;141:105759. doi: 10.1016/j.jmbbm.2023.105759. Epub 2023 Mar 6. PMID: 36905707.
- 31. Larsson C. Zirconium dioxide based dental restorations. Studies on clinical performance and fracture behaviour. *Swed Dent J Suppl.* 2011;(213):9-84. PMID: 21919311.
- 32. Ispas A, Iosif L, Popa D, Negucioiu M, Constantiniuc M, Bacali C, Buduru S. Comparative Assessment of the Functional Parameters for Metal-Ceramic and All-Ceramic Teeth Restorations in Prosthetic Dentistry-A Literature Review. *Biology (Basel).* 2022 Apr 5;11(4):556. doi: 10.3390/biology11040556. PMID: 35453755; PMCID: PMC9024664.
- 33. Habashneh M, Rad MM. Optimizing Topology of Structures Considering Fatigue-Resistance. *Chemical Engineering Transactions.* 2023 Dec 30;107:613-8.
- 34. Manicone PF, Rossi Iommelli P, Raffaelli L. An overview of zirconia ceramics: basic properties and clinical applications. *J Dent.* 2007 Nov;35(11):819-26. doi: 10.1016/j.jdent.2007.07.008. Epub 2007 Sep 6. PMID: 17825465.
- 35. Goodacre CJ, Campagni WV, Aquilino SA. Tooth preparations for complete crowns: an art form based on scientific principles. *J Prosthet Dent.* 2001;85(4):363–376.