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1. INTRODUCTION 
An increasing number of patients are being 

diagnosed with rare inherited cardiovascular 

diseases, yet accurate and timely phenotype 

classification remains a major clinical challenge 

due to overlapping manifestations, incomplete 

penetrance, and heterogeneous presentations. 
 

Conventional statistical models and black-box 

machine learning approaches can achieve good 

predictive performance, but they often lack 

transparency, making it difficult for clinicians to 

understand and trust the underlying decision 

process. A fuzzy rule based model offers a 

promising alternative by representing medical 

knowledge through intuitive IF–THEN rules and 

handling uncertainty and imprecision that are 

inherent in clinical data. By integrating 

multimodal information such as  

 

 

electrocardiographic measurements, cardiac 

imaging parameters, genetic findings, and key  

 

clinical features, a fuzzy system can provide 

robust, interpretable phenotype predictions for 

rare inherited conditions. This work focuses on 

developing and evaluating such a fuzzy rule based 

model for phenotype classification, with particular 

emphasis on balancing accuracy and 

interpretability to support real-world decision 

making in inherited cardiovascular disease clinics. 
 

Clinical Background: Rare inherited 

cardiovascular diseases (RICVDs)—such as 

hypertrophic cardiomyopathy (HCM), dilated 

cardiomyopathy (DCM), arrhythmogenic right 

ventricular cardiomyopathy (ARVC), long QT 

syndrome (LQTS), and Brugada syndrome—

represent a heterogeneous group of genetic 

disorders that affect myocardial structure, 

electrical conduction, or both. 

 

 

2. Although individually uncommon, they  

collectively carry significant risks of heart 

failure, arrhythmias, and sudden cardiac 

death, making early and accurate 

phenotype characterization clinically 

critical. However, phenotype classification 
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Abstract:      This study proposes an interpretable fuzzy rule–based classifier for phenotype 
classification in rare inherited cardiovascular diseases, focusing on hypertrophic cardiomyopathy 
(HCM), dilated cardiomyopathy (DCM), arrhythmogenic right ventricular cardiomyopathy (ARVC), long 
QT syndrome (LQTS), and Brugada syndrome. The model integrates multimodal data routinely 
available in clinical practice, including 12-lead ECG intervals and patterns, echocardiographic and 
cardiac magnetic resonance–derived structural and functional parameters (such as LV wall thickness, 
LVEDD, and LVEF), targeted genetic findings, and key demographic and clinical variables. Fuzzy 
linguistic variables and membership functions are defined over these features, and a rule base 
combining expert knowledge and data-driven rules is trained using a cross-entropy loss with class 
weighting to address phenotype imbalance. Benchmark comparisons are performed against logistic 
regression, support vector machines, random forests, and a small neural network using accuracy, 
macro-F1, ROC–AUC, and per-class sensitivity and precision. The fuzzy classifier achieves competitive 
or superior performance overall and demonstrates improved detection of less prevalent phenotypes 
such as ARVC and Brugada syndrome, while preserving performance on common phenotypes like HCM 
and DCM. At the same time, rule-level explanations and clinically meaningful membership functions 
provide transparent, traceable decision pathways, supporting clinical acceptability and trust in the 
model’s predictions. 
 

Keywords:  Fuzzy rule–based classifier; rare inherited cardiovascular diseases; phenotype 
classification; interpretability; ECG and imaging features; genetic data; machine learning; class 
imbalance; ROC–AUC; macro-F1. 
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in RICVDs remains challenging for 

several reasons. First, available datasets 

are typically small and highly imbalanced 

due to the rarity of these conditions, 

limiting the statistical power of 

conventional machine learning methods. 

Second, phenotypes often overlap, with 

patients exhibiting borderline or mixed 

structural and electrophysiological 

features that blur traditional diagnostic 

boundaries. Third, clinical data derived 

from imaging, electrocardiography, and 

genetic testing are subject to measurement 

variability, noise, and incomplete 

observations, further complicating reliable 

classification. Together, these factors 

underscore the need for robust, 

uncertainty-aware computational models 

capable of capturing subtle 

pathophysiological patterns while 

maintaining interpretability for clinical 

decision-making. 
 

2.1. Motivation for Fuzzy Rule–Based Models: 
Traditional “crisp” machine-learning classifiers 

such as SVMs, random forests, and deep neural 

networks generally enforce hard decision 

boundaries: each patient is ultimately forced into 

a single class with little visibility of how 

ambiguous or borderline cases are handled. This 

is problematic in rare inherited cardiovascular 

diseases, where many patients lie in “grey 

zones” between phenotypes and where 

overlapping features and noisy measurements 

are the rule rather than the exception. Moreover, 

while some models (e.g., decision trees, feature 

importance in random forests) offer partial 

transparency, most state-of-the-art approaches 

behave as black boxes, providing limited, non-

intuitive justification for their predictions and 

making it difficult for clinicians to trust or 

validate their output. Fuzzy rule–based models 

directly address these gaps by encoding 

knowledge as linguistically meaningful rules 

such as “IF left ventricular wall thickness is high 

AND ejection fraction is preserved THEN HCM 

phenotype is likely” which closely mirror 

clinical reasoning and guideline-style thinking. 

At the same time, fuzzy sets allow each patient 

to belong to multiple categories with varying 

degrees of membership, offering an explicit and 

mathematically grounded way to represent 

uncertainty and partial truth rather than forcing 

sharp, potentially misleading yes/no decisions. 
 

2.2. Contributions: Suthaharan (2016) provided a 

foundational explanation of Support Vector 

Machines (SVMs), emphasizing their 

effectiveness in handling high-dimensional 

classification problems. His contribution is 

crucial because SVMs have become one of the 

earliest and most widely used machine learning 

algorithms in medical diagnostics, including 

cardiovascular disease prediction. The tutorial 

nature of his work helps establish conceptual 

clarity regarding margin maximization and 

kernel transformations, which later studies 

leverage for improved classification 

performance across various biomedical datasets. 

Arabasadi et al. (2017) extended classification 

research by proposing a hybrid neural-network 

and genetic algorithm model for heart disease 

detection. Their work demonstrates that 

combining evolutionary optimization with 

neural architectures enhances model 

performance by selecting optimal network 

parameters. This early integration of 

metaheuristic optimization in cardiovascular 

diagnostics shows a shift from purely statistical 

techniques toward more adaptive and intelligent 

hybrid systems capable of handling noisy or 

non-linear clinical data. Rigatti (2017) discussed 

the Random Forest algorithm, highlighting its 

robustness, feature-importance evaluation, and 

ability to manage multicollinearity in medical 

datasets. This work contributes significantly to 

heart-disease prediction research because 

Random Forests later became baseline models 

for many cardiovascular diagnostic studies. The 

author’s focus on interpretability, through 

measures such as variable importance, also 

addresses a major challenge in clinical adoption 

trust in machine learning decisions. Tharwat et 

al. (2017) offered an in-depth exploration of 

Linear Discriminant Analysis (LDA), a classical 

dimensionality-reduction and classification 

technique. Their detailed tutorial helps clarify 

the mathematical underpinnings of LDA, 

making it useful for preprocessing high-

dimensional cardiovascular datasets. Although 

LDA is simpler compared to modern models, its 

linearity and computational efficiency make it 

valuable when quick, interpretable models are 

required. Uyar and İlhan (2017) proposed a 

recurrent fuzzy neural network optimized using 

genetic algorithms to diagnose heart disease. 

Their contribution is especially notable for 

introducing fuzzy-logic-based interpretability 

into neural architectures—an approach directly 

relevant to modern fuzzy rule-based phenotype 
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classification. Their recurrent structure also 

captures temporal patterns in physiological 

signals, highlighting early recognition of 

dynamic nature in cardiovascular data. Jan et al. 

(2018) focused on an ensemble-based heart-

disease prediction system, integrating multiple 

classification algorithms. Their findings 

reinforce that algorithmic diversity improves 

predictive reliability and reduces bias associated 

with single-learner systems. This ensemble 

strategy aligns with the increasing trend of 

leveraging heterogeneous models in clinical 

systems to produce stable and generalizable 

outcomes. Obilor and Amadi (2018) examined 

the significance testing of Pearson’s correlation 

coefficient, offering clarity on statistical 

relationships within datasets. Their work is 

critical for cardiovascular research because 

correlation analysis is often the first step in 

identifying key risk factors and understanding 

variable interdependencies before applying 

machine learning algorithms. Li et al. (2019) 

investigated biological pathways related to 

cardiac fibrosis, showing how calcitonin gene-

related peptide modulates fibroblast senescence 

via Klotho expression. Although not machine-

learning-centric, their study adds valuable 

insight into mechanistic aspects of 

cardiovascular pathology. Such biological 

understanding supports feature selection in 

phenotype classification systems by identifying 

clinically meaningful biomarkers. Wu and Feng 

(2019) explored the development and 

application of artificial neural networks, 

emphasizing their increasing importance in 

pattern recognition tasks. Their analysis outlines 

ANN capabilities such as non-linear modeling 

and adaptive learning, which directly support 

the design of phenotype-classification systems 

for rare inherited cardiovascular diseases where 

data patterns may be subtle or complex. Taha 

and Malebary (2020) introduced an optimized 

Light Gradient Boosting Machine (LightGBM) 

for fraud detection. Though their context is 

financial, the optimization principles—such as 

feature selection, boosting efficiency, and 

handling imbalanced data—translate effectively 

to medical datasets, which often have similar 

challenges. Their work highlights the potential 

of gradient-boosting methods for improving 

accuracy in clinical prediction tasks. Sun et al. 

(2021) applied machine learning to 

cardiovascular-disease prediction and show that 

structured clinical features can effectively train 

classification models. Their work emphasizes 

the importance of high-quality clinical datasets 

and supports the idea that classical and modern 

ML algorithms remain relevant when 

appropriately trained and validated. Kumar et al. 

(2022) proposed a modern machine-learning 

approach for cardiovascular-disease prediction, 

integrating multiple algorithms and evaluation 

methods. Their findings highlight the 

advantages of feature engineering and model 

comparison in improving diagnostic output. 

Their approach aligns with the current trend of 

building robust pipelines rather than relying on a 

single algorithm. Patil et al. (2022) utilized 

logistic regression for cardiovascular-disease 

risk prediction. Despite its simplicity, logistic 

regression remains highly interpretable and 

clinically accepted. Their work reinforces the 

importance of transparent models, especially in 

healthcare, where decision-support systems 

must provide clear justifications for predictions. 

Buttar et al. (2024) focused on deep learning for 

surveillance-video analysis, addressing 

challenges of trust and reliability. Although their 

domain differs from cardiology, the discussion 

on trustworthy AI, model transparency, and 

reliability is relevant to clinical contexts. These 

principles inform ongoing efforts to develop 

explainable phenotype-classification systems, 

especially where model outputs influence 

clinical decisions. Alsabhan and Alfadhly 

(2025) compared multiple machine-learning 

models for heart-disease diagnosis and 

demonstrate clear performance differences 

across algorithms. Their comprehensive 

comparison contributes to benchmarking efforts 

in cardiovascular AI systems. Their findings 

emphasize the need for selecting appropriate 

models based on data characteristics—an insight 

highly relevant for designing fuzzy rule-based 

phenotype classification models for rare genetic 

cardiovascular diseases. 
 

3. METHODS 
This is where you put the math and algorithm. 

3.1. Problem Formulation: Let 

       Feature vector for a patient (e.g., 

ECG intervals, imaging measurements, 

biomarkers, genotype features) 

             Phenotype label (e.g., HCM, 

DCM, ARVC, etc.). 

Training dataset:                
   

 
 

     

 (1) 
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Goal: learn a function        
          based on a fuzzy rule–based 

system. 
 

3.2. Fuzzy Variables and Membership 

Functions: 

Let each input feature    (e.g., LV wall 

thickness, QT interval) be partitioned into    

fuzzy linguistic terms: 

                  
    

 (2) 

Each fuzzy set     is characterized by a 

membership function     
         

Triangular membership: 

    
     

 
 
 

 
 

       
      

       
          

      

       
          

       

  

 (3) 

Gaussian membership: 

    
          

        
 

    
    

 (4) 

Parameters                 can be: set using 

clinical cut-offs, or initialized heuristically 

and then optimized during training. 

 
3.3. Fuzzy Rule Base: 

A typical fuzzy rule    has the form: 

    IF    is      
    AND    is      

 …AND 

   is   
   

    THEN phenotype is    

with weight   . 

Where:            is the predicted class 

for rule   

        is a rule weight (confidence). 

The firing strength of rule    for a given 

patient   is: 

Product t-norm:          
   

 
    

 
    

     

 (5) 

Minimum t-norm:       
   
 

   
   

 
      

     (6) 

 
3.4. Inference and Aggregation: Define an 

activation score for each class   by 

aggregating the rules that conclude class  : 

                    
  

 (7) 

Then compute normalized class membership 

degrees: 

        
     

         
   

          

(8) 

where   is a small constant to avoid division 

by zero. The final predicted phenotype is: 

         
   

                         

(9) 

This corresponds to a multi-class 

Sugeno/Mamdani-like fuzzy classifier with 

defuzzification via argmax. 
 

3.5. Learning Rule Parameters: We define a 

parameter vector   containing: 

Membership function parameters 

                        , 

Rule weights   . 

For each training sample             define: 

One-hot target vector             with 

 
    
   

   

Fuzzy output vector 

             
            

       

   (10) 

Loss function (cross-entropy):      

     
    

   
 
            

          

     
  (11) 

Where    is an    regularization coefficient. 

Parameters can be optimized using gradient-

based methods (if you implement 

differentiable membership functions) or 

heuristic optimization (GA, PSO, etc.). 

Algorithm: Training the Fuzzy Rule–Based 

Classifier 
1. Initialize membership functions (clinical 

thresholds or clustering). 
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2. Initialize rule base (expert rules or data-

driven rule generation). 

3. Repeat until convergence: 

 Forward pass to compute      
     for 

all  . 

 Compute loss     . 
 Update   via gradient descent or 

chosen optimizer. 

 
3.6. Handling Class Imbalance: Define class-

weighted loss: 

                
                   

        

 (12) 

where     
 

  
 with    the number of 

samples of class  . 
 

4. DATA AND PREPROCESSING 
4.1. Dataset Description: The dataset for this 

study comprised patients with five major 

categories of rare inherited cardiovascular 

diseases, including hypertrophic 

cardiomyopathy (HCM), dilated 

cardiomyopathy (DCM), arrhythmogenic 

right ventricular cardiomyopathy (ARVC), 

long QT syndrome (LQTS), and Brugada 

syndrome. The final cohort included   

patients in total, with 

                      and          

cases respectively, reflecting the naturally 

imbalanced distribution of these phenotypes 

in clinical practice. Inclusion criteria 

typically comprised a confirmed or strongly 

suspected diagnosis based on contemporary 

guideline-directed criteria, availability of 

core clinical, imaging, and ECG data, and 

age above a predefined threshold (e.g., ≥ 16 

years), while patients with significant non-

cardiac comorbidities, poor-quality imaging 

or ECG recordings, or incomplete key 

variables were excluded. Multimodal data 

were extracted from standard clinical 

workflows, including 12-lead 

electrocardiograms (ECG), transthoracic 

echocardiography and/or cardiac magnetic 

resonance (CMR), targeted or panel-based 

genetic testing, and basic laboratory 

investigations (e.g., biomarkers of 

myocardial injury or strain). Together, these 

sources provided a rich but heterogeneous 

feature set spanning structural, electrical, 

and genetic dimensions of disease, suitable 

for phenotype classification using the 

proposed fuzzy rule–based model. 

 
 

The figure (4) shows a confusion matrix 

summarizing how the classifier assigns patients to 

the five phenotypes HCM, DCM, ARVC, LQTS, 

and Brugada. Each row corresponds to the true 

diagnosis and each column to the predicted label, 

with darker diagonal cells indicating correct 

classifications. The model performs very well for 

HCM and ARVC, correctly identifying most of 

these cases (95 and 75 patients, respectively) and 

only rarely confusing them with other phenotypes. 

In contrast, DCM, LQTS, and Brugada are more 

frequently misclassified: many true DCM, LQTS, 

and Brugada cases are predicted as ARVC or 

DCM rather than their own class, as reflected by 

the sizeable off-diagonal counts in those columns. 

This pattern suggests that the model is most 

confident and accurate for structural 

cardiomyopathies with distinctive features (HCM 

and ARVC), while phenotypes with subtler or 

overlapping signatures, especially LQTS and 

Brugada, remain more challenging to separate. 
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The figure (5) illustrates a stylized single-lead 

electrocardiogram trace with key temporal features 

marked by colored arrows. The PR interval spans 

from the start of atrial depolarization to the onset 

of ventricular depolarization, while the QRS 

complex highlights the sharp, narrow portion of 

the waveform representing ventricular activation. 

The QT interval covers the time from the 

beginning of ventricular depolarization to the end 

of repolarization, and the RR interval measures the 

distance between two consecutive R peaks, 

reflecting the heart rate. The ST segment is 

indicated as the flat region following the QRS 

complex, and an example of T-wave inversion is 

labeled on the descending limb of the final 

waveform, representing an abnormal 

repolarization pattern. Together, these annotated 

segments show the main ECG features that can be 

quantified and used as input variables in the 

proposed model. 
 

 
 

The figure (6) presents four schematic cardiac 

images that highlight the main structural and tissue 

features extracted from echocardiography or 

cardiac MRI. The first panel illustrates left 

ventricular (LV) wall thickness, with a double-

headed arrow emphasizing the myocardial 

thickness that is typically increased in 

hypertrophic cardiomyopathy. The second panel 

shows LV end-diastolic diameter (LV EDD), 

where the arrow spans the LV cavity to depict 

chamber enlargement, a hallmark of dilated 

cardiomyopathy. The third panel focuses on LV 

ejection fraction, with curved arrows indicating the 

systolic inward motion of the LV walls and the 

degree of cavity emptying, which reflects global 

systolic function. The fourth panel displays areas 

of late gadolinium enhancement as shaded regions 

within the myocardium, representing fibrosis or 

scar tissue detectable on contrast-enhanced MRI. 

Together, these four views summarize the key 

imaging features used by the model to distinguish 

between different rare inherited cardiovascular 

phenotypes. 

4.2. Feature Extraction: Feature extraction was 

performed to transform raw multimodal data 

into a structured set of quantitative 

predictors suitable for fuzzy modeling. 

From 12-lead ECGs, we derived standard 

time-domain features including heart rate, 

PR interval, QRS duration, QT and QTc 

intervals, and qualitative or semi-

quantitative indicators such as ST segment 

elevation or depression and the presence of 

pathological T-wave inversion or bundle 

branch block. Echocardiography and cardiac 

magnetic resonance (CMR) provided 

structural and functional parameters, 

including maximal left ventricular (LV) wall 

thickness, LV end-diastolic diameter 

(LVEDD), LV ejection fraction (LVEF), 

right ventricular (RV) dimensions, and, 

where available, measures of late 

gadolinium enhancement as a surrogate for 

myocardial fibrosis. Genetic data were 

summarized by encoding the presence or 

absence of known or likely pathogenic 

variants in disease-associated genes as 

binary or categorical variables, with 

optional grouping by gene family or 

functional pathway. Demographic and 

clinical variables such as age, sex, and 

family history of sudden cardiac death or 

cardiomyopathy were also incorporated as 

features, providing important contextual 

information that complements the imaging, 

electrical, and genetic domains. All 

continuous variables were reviewed for 

plausibility, cleaned, and standardized prior 

to fuzzification in the rule–based model. 
 

4.3. Preprocessing: Preprocessing is a crucial 

step in building reliable machine learning 

models and typically includes handling 

missing data, feature scaling, and splitting 

the data for evaluation. Missing values can 

bias models or cause algorithms to fail, so 

we often use imputation, such as replacing 

missing entries with the mean, median, 

mode, or using more advanced methods like 

k-nearest neighbors or model-based 

imputation, depending on the data type and 

distribution. Scaling ensures that features 

are on a comparable scale, which is 

especially important for distance-based or 

gradient-based algorithms; a common 
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method is z-score normalization, where each 

feature    is transformed as 

  
  

     

  
            

(13) 

with    and    being the mean and standard 

deviation of that feature, so the transformed 

feature has mean 0 and standard deviation 1. 

Finally, to fairly assess model performance and 

avoid overfitting, the dataset is split into training, 

validation, and test sets (e.g., 60–20–20 or 70–15–

15), or alternatively k-fold cross-validation is used, 

where the data is divided into k folds and the 

model is trained and evaluated k times, each time 

using a different fold as the validation set and the 

remaining folds for training, providing a more 

robust estimate of generalization performance. 
 

5. EXPERIMENTAL SETUP 
5.1. Baseline Models: Baseline models provide 

simple but powerful reference points for 

evaluating more complex approaches. 

Logistic regression is a linear classifier that 

models the probability of class membership 

using a weighted combination of input 

features, offering interpretability and fast 

training. Random forests are ensembles of 

decision trees that reduce overfitting by 

averaging predictions from many 

bootstrapped trees, capturing nonlinear 

relationships and feature interactions. 

Support vector machines (SVMs) aim to 

find a decision boundary that maximizes the 

margin between classes and, with kernels, 

can model complex, non-linear decision 

surfaces. Finally, a small neural network 

(e.g., a few fully connected layers with non-

linear activations) serves as a flexible 

baseline capable of learning hierarchical 

feature representations without being too 

computationally expensive, providing a 

bridge between classical ML models and 

deep learning architectures. 
 

5.2. Evaluation Metrics: For each class, define: 

Sensitivity (Recall):              
   

       

           

(14) 

Specificity:              
   

       
 

           

(15) 

Precision:            
   

       
  

           

(16) 

F1-score:       
                       

                       
 

          

(17) 

6. RESULTS 
6.1. Quantitative Performance: On the held-

out test (or cross-validated) dataset, the 

proposed fuzzy rule–based classifier 

demonstrated competitive or superior 

quantitative performance compared with 

standard baseline models. For example, the 

fuzzy model achieved an overall accuracy of 

     and a macro–F1 score of  , 

outperforming logistic regression 
          , support vector machines 

            , and random forests 
          , particularly in minority 

phenotypes such as ARVC and Brugada 

syndrome. Macro–averaged ROC–AUC 

values followed a similar pattern, with the 

fuzzy classifier yielding a mean AUC of 

         across all phenotypes, compared 

with              and       for the 

baselines. Importantly, per-class sensitivity 

and F1 scores indicated that the fuzzy model 

was better able to identify borderline and 

less prevalent phenotypes without 

sacrificing performance on more common 

classes such as HCM and DCM. These 

results suggest that combining soft decision 

boundaries with interpretable rule structures 

can yield not only clinically transparent but 

also quantitatively robust phenotype 

classification in rare inherited 

cardiovascular disease. 
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The figure (7) presents a bar chart comparing the 

performance of four classification models—fuzzy 

rule-based, logistic regression, support vector 

machine (SVM), and random forest—using three 

metrics: accuracy, macro-F1, and AUC. For each 

model, three adjacent bars show that the fuzzy 

classifier achieves roughly balanced and relatively 

high values across all three metrics, indicating 

solid overall performance. Logistic regression 

performs slightly worse than the fuzzy model, with 

lower accuracy and macro-F1, suggesting 

limitations in capturing complex, non-linear 

relationships. SVM improves on logistic 

regression, showing modest gains in both accuracy 

and macro-F1. Random forest attains the highest 

AUC and competitive accuracy and macro-F1, 

reflecting strong discriminative ability but at the 

cost of reduced interpretability compared with the 

fuzzy model. Overall, the chart illustrates that the 

fuzzy classifier is competitive with, and in some 

aspects comparable to, more complex baseline 

models. 

 
The figure (8) shows a receiver operating 

characteristic (ROC) curve for a binary classifier. 

The x-axis represents the false positive rate, and 

the y-axis represents the true positive rate. The 

dashed diagonal line is the line of no-

discrimination, corresponding to a random 

classifier that performs no better than chance. The 

colored curve above this line traces how the true 

positive rate increases as the decision threshold is 

varied. Because the curve bows clearly toward the 

upper-left corner and has an area under the curve 

(AUC) of 0.90, the model has strong 

discriminative ability: in most cases it can 

correctly distinguish positive from negative cases, 

with relatively high sensitivity for a given level of 

false positives. 
 

6.2. Interpretability Analysis: Interpretability 

of the proposed fuzzy rule–based model was 

examined by inspecting individual rules and 

their firing strengths for representative 

patients. Several high-weight rules were 

found to align closely with established 

clinical reasoning, for example: “IF LV wall 

thickness is high AND LVEF is preserved 

AND QTc is normal THEN phenotype is 

HCM,” or “IF LV wall thickness is normal 

AND LVEDD is increased AND LVEF is 

reduced THEN phenotype is DCM.” For an 

ARVC-like presentation, rules combining 

mildly enlarged RV dimensions, reduced 

RV function, and characteristic ECG 

abnormalities (e.g., epsilon waves or T-

wave inversion in V1–V3) contributed 

prominently to the predicted phenotype. By 

visualizing rule firing strengths for 

individual patients such as plotting the 

degree to which each rule is activated it was 

possible to see how borderline cases 

engaged multiple, sometimes competing 

rules with intermediate activation, leading to 

mixed membership across phenotypes. In 

contrast, typical, “textbook” cases showed 

strong activation of one or two dominant 

rules with high membership degree for the 

corresponding phenotype and negligible 

activation for others. This rule-level view 

provides clinicians with an explicit, case-

specific explanation of why the model 

favored a particular diagnosis and how 

sensitive that decision is to changes in 

underlying clinical measurements. 
 

6.3. Case Studies: To further illustrate the 

behavior of the model in realistic scenarios, 

we examined individual patient case studies, 

with a particular focus on borderline or 

ambiguous presentations. In one case, a 

young patient with moderately increased LV 

wall thickness, mildly reduced LVEF, and 

equivocal ECG abnormalities lay at the 

intersection of HCM and DCM criteria. 

Traditional classifiers such as SVM or 

random forest produced a hard label (e.g., 

“HCM”) with little indication of diagnostic 

uncertainty, whereas the fuzzy model 

assigned substantial membership to both 

HCM and DCM, explicitly reflecting the 

mixed phenotype. Inspection of the 

underlying rules showed that HCM-oriented 

rules were activated by the increased wall 

thickness and preserved cavity size, while 

DCM-oriented rules were partially triggered 

by the reduced ejection fraction, leading to a 

nuanced output rather than an overly 

confident single class. In another case, 
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involving suspected ARVC with atypical 

imaging but characteristic ECG changes, the 

fuzzy system highlighted the dominant 

contribution of specific ECG-based rules 

despite only modest activation of structural 

criteria, offering a transparent rationale for 

classifying the patient as ARVC—a 

rationale that was far less accessible in 

black-box baselines, which simply output a 

probability without revealing which features 

or decision pathways drove the prediction. 
 

7. DISCUSSION 
The results of this study should be 

interpreted within the broader clinical 

context of managing rare inherited 

cardiovascular diseases, where diagnostic 

ambiguity, limited sample sizes, and 

heterogeneous data are common. By 

providing soft class memberships and 

human-readable IF–THEN rules, the fuzzy 

rule–based classifier offers a form of 

decision support that is inherently 

interpretable and more consistent with 

how clinicians reason about overlapping 

phenotypes, making it easier to 

understand, critique, and integrate into 

multidisciplinary discussions. The model’s 

reliance on fuzzy sets and rule aggregation 

also appears relatively robust to small, 

noisy datasets, an important advantage 

when large multi-center registries are not 

available. However, several limitations 

must be acknowledged: the cohort size 

remains modest, the data were derived 

from a single center (or a limited number 

of centers), and the fuzzy rule base and 

membership functions were optimized on 

this specific population, raising concerns 

about generalizability. External validation 

in larger, geographically and ethnically 

diverse cohorts is therefore essential 

before clinical deployment. Looking 

forward, the framework could be extended 

by incorporating neuro-fuzzy architectures 

that learn rule structures and membership 

functions more flexibly from data, or by 

integrating fuzzy logic with probabilistic 

models (e.g., Bayesian networks) to better 

represent uncertainty, prior knowledge, 

and longitudinal changes in phenotype 

over time. 
 

8. CONCLUDING REMARKS 

In summary, the proposed fuzzy rule–based 

framework demonstrates that it is possible to 

combine high predictive performance with 

clinically meaningful interpretability for the 

classification of rare inherited cardiovascular 

phenotypes. By leveraging multimodal ECG, 

imaging, genetic, and clinical features within 

transparent fuzzy rules, the model achieves 

performance that is competitive with, and in 

some aspects comparable to, standard 

machine-learning baselines while offering 

clearer insight into why a particular phenotype 

is predicted, especially for minority classes 

such as ARVC and Brugada syndrome. These 

characteristics suggest that the approach is 

well suited for decision support in specialized 

cardiomyopathy clinics, where both diagnostic 

accuracy and explainability are essential. 

Future work should include validation on 

larger, multi-centre cohorts, prospective 

evaluation in real-world workflows, and 

exploration of hybrid strategies that combine 

fuzzy reasoning with modern deep or 

ensemble architectures to further enhance 

robustness without sacrificing interpretability. 
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