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*Corresponding Author | Abstract: This study proposes an interpretable fuzzy rule-based classifier for phenotype
Dr. Ashish Kumar Soni | classification in rare inherited cardiovascular diseases, focusing on hypertrophic cardiomyopathy
(HCM), dilated cardiomyopathy (DCM), arrhythmogenic right ventricular cardiomyopathy (ARVC), long
QT syndrome (LQTS), and Brugada syndrome. The model integrates multimodal data routinely
available in clinical practice, including 12-lead ECG intervals and patterns, echocardiographic and
cardiac magnetic resonance-derived structural and functional parameters (such as LV wall thickness,
LVEDD, and LVEF), targeted genetic findings, and key demographic and clinical variables. Fuzzy
linguistic variables and membership functions are defined over these features, and a rule base
combining expert knowledge and data-driven rules is trained using a cross-entropy loss with class
weighting to address phenotype imbalance. Benchmark comparisons are performed against logistic
regression, support vector machines, random forests, and a small neural network using accuracy,
macro-F1, ROC-AUC, and per-class sensitivity and precision. The fuzzy classifier achieves competitive
or superior performance overall and demonstrates improved detection of less prevalent phenotypes
such as ARVC and Brugada syndrome, while preserving performance on common phenotypes like HCM
and DCM. At the same time, rule-level explanations and clinically meaningful membership functions
provide transparent, traceable decision pathways, supporting clinical acceptability and trust in the
model’s predictions.
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electrocardiographic ~ measurements,  cardiac
1. INTRODUCTION imaging parameters, genetic findings, and key

An increasing number of patients are being

diagnosed with rare inherited cardiovascular clinical features, a fuzzy system can provide

diseases, yet accurate and timely phenotype
classification remains a major clinical challenge
due to overlapping manifestations, incomplete
penetrance, and heterogeneous presentations.

Conventional statistical models and black-box
machine learning approaches can achieve good
predictive performance, but they often lack
transparency, making it difficult for clinicians to
understand and trust the underlying decision
process. A fuzzy rule based model offers a
promising alternative by representing medical
knowledge through intuitive IF-THEN rules and
handling uncertainty and imprecision that are
inherent in clinical data. By integrating
multimodal information such as

2. Although individually uncommon, they
collectively carry significant risks of heart

robust, interpretable phenotype predictions for
rare inherited conditions. This work focuses on
developing and evaluating such a fuzzy rule based
model for phenotype classification, with particular
emphasis on  balancing  accuracy and
interpretability to support real-world decision
making in inherited cardiovascular disease clinics.

Clinical Background: Rare inherited
cardiovascular diseases (RICVDs)—such as
hypertrophic cardiomyopathy (HCM), dilated
cardiomyopathy (DCM), arrhythmogenic right
ventricular cardiomyopathy (ARVC), long QT
syndrome (LQTS), and Brugada syndrome—
represent a heterogeneous group of genetic
disorders that affect myocardial structure,
electrical conduction, or both.
failure, arrhythmias, and sudden cardiac
death, making early and accurate
phenotype  characterization  clinically
critical. However, phenotype classification
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in RICVDs remains challenging for
several reasons. First, available datasets
are typically small and highly imbalanced
due to the rarity of these conditions,
limiting the  statistical power of
conventional machine learning methods.
Second, phenotypes often overlap, with
patients exhibiting borderline or mixed
structural and electrophysiological
features that blur traditional diagnostic
boundaries. Third, clinical data derived
from imaging, electrocardiography, and
genetic testing are subject to measurement
variability, noise, and incomplete
observations, further complicating reliable
classification. Together, these factors
underscore  the need for robust,
uncertainty-aware computational models
capable of capturing subtle
pathophysiological patterns while
maintaining interpretability for clinical
decision-making.

2.1. Motivation for Fuzzy Rule-Based Models:

Traditional “crisp” machine-learning classifiers
such as SVMs, random forests, and deep neural
networks generally enforce hard decision
boundaries: each patient is ultimately forced into
a single class with little visibility of how
ambiguous or borderline cases are handled. This
is problematic in rare inherited cardiovascular
diseases, where many patients lie in “grey
zones” between phenotypes and where
overlapping features and noisy measurements
are the rule rather than the exception. Moreover,
while some models (e.g., decision trees, feature
importance in random forests) offer partial
transparency, most state-of-the-art approaches
behave as black boxes, providing limited, non-
intuitive justification for their predictions and
making it difficult for clinicians to trust or
validate their output. Fuzzy rule-based models
directly address these gaps by encoding
knowledge as linguistically meaningful rules
such as “IF left ventricular wall thickness is high
AND ejection fraction is preserved THEN HCM
phenotype is likely” which closely mirror
clinical reasoning and guideline-style thinking.
At the same time, fuzzy sets allow each patient
to belong to multiple categories with varying
degrees of membership, offering an explicit and
mathematically grounded way to represent
uncertainty and partial truth rather than forcing
sharp, potentially misleading yes/no decisions.

2.2. Contributions: Suthaharan (2016) provided a

foundational explanation of Support Vector
Machines  (SVMs),  emphasizing  their
effectiveness in handling high-dimensional
classification problems. His contribution is
crucial because SVMs have become one of the
earliest and most widely used machine learning
algorithms in medical diagnostics, including
cardiovascular disease prediction. The tutorial
nature of his work helps establish conceptual
clarity regarding margin maximization and
kernel transformations, which later studies
leverage for improved classification
performance across various biomedical datasets.
Arabasadi et al. (2017) extended classification
research by proposing a hybrid neural-network
and genetic algorithm model for heart disease
detection. Their work demonstrates that
combining evolutionary optimization with
neural architectures enhances model
performance by selecting optimal network
parameters.  This early integration of
metaheuristic optimization in cardiovascular
diagnostics shows a shift from purely statistical
techniques toward more adaptive and intelligent
hybrid systems capable of handling noisy or
non-linear clinical data. Rigatti (2017) discussed
the Random Forest algorithm, highlighting its
robustness, feature-importance evaluation, and
ability to manage multicollinearity in medical
datasets. This work contributes significantly to
heart-disease  prediction research  because
Random Forests later became baseline models
for many cardiovascular diagnostic studies. The
author’s focus on interpretability, through
measures such as variable importance, also
addresses a major challenge in clinical adoption
trust in machine learning decisions. Tharwat et
al. (2017) offered an in-depth exploration of
Linear Discriminant Analysis (LDA), a classical
dimensionality-reduction and  classification
technique. Their detailed tutorial helps clarify
the mathematical underpinnings of LDA,
making it useful for preprocessing high-
dimensional cardiovascular datasets. Although
LDA is simpler compared to modern models, its
linearity and computational efficiency make it
valuable when quick, interpretable models are
required. Uyar and ilhan (2017) proposed a
recurrent fuzzy neural network optimized using
genetic algorithms to diagnose heart disease.
Their contribution is especially notable for
introducing fuzzy-logic-based interpretability
into neural architectures—an approach directly
relevant to modern fuzzy rule-based phenotype
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classification. Their recurrent structure also
captures temporal patterns in physiological
signals, highlighting early recognition of
dynamic nature in cardiovascular data. Jan et al.
(2018) focused on an ensemble-based heart-
disease prediction system, integrating multiple
classification  algorithms.  Their  findings
reinforce that algorithmic diversity improves
predictive reliability and reduces bias associated
with single-learner systems. This ensemble
strategy aligns with the increasing trend of
leveraging heterogeneous models in clinical
systems to produce stable and generalizable
outcomes. Obilor and Amadi (2018) examined
the significance testing of Pearson’s correlation
coefficient, offering clarity on statistical
relationships within datasets. Their work is
critical for cardiovascular research because
correlation analysis is often the first step in
identifying key risk factors and understanding
variable interdependencies before applying
machine learning algorithms. Li et al. (2019)
investigated biological pathways related to
cardiac fibrosis, showing how calcitonin gene-
related peptide modulates fibroblast senescence
via Klotho expression. Although not machine-
learning-centric, their study adds valuable
insight into  mechanistic  aspects  of
cardiovascular  pathology. Such biological
understanding supports feature selection in
phenotype classification systems by identifying
clinically meaningful biomarkers. Wu and Feng
(2019) explored the development and
application of artificial neural networks,
emphasizing their increasing importance in
pattern recognition tasks. Their analysis outlines
ANN capabilities such as non-linear modeling
and adaptive learning, which directly support
the design of phenotype-classification systems
for rare inherited cardiovascular diseases where
data patterns may be subtle or complex. Taha
and Malebary (2020) introduced an optimized
Light Gradient Boosting Machine (LightGBM)
for fraud detection. Though their context is
financial, the optimization principles—such as
feature selection, boosting efficiency, and
handling imbalanced data—translate effectively
to medical datasets, which often have similar
challenges. Their work highlights the potential
of gradient-boosting methods for improving
accuracy in clinical prediction tasks. Sun et al.
(2021)  applied machine learning to
cardiovascular-disease prediction and show that
structured clinical features can effectively train
classification models. Their work emphasizes

the importance of high-quality clinical datasets
and supports the idea that classical and modern
ML  algorithms remain relevant  when
appropriately trained and validated. Kumar et al.
(2022) proposed a modern machine-learning
approach for cardiovascular-disease prediction,
integrating multiple algorithms and evaluation
methods.  Their  findings  highlight  the
advantages of feature engineering and model
comparison in improving diagnostic output.
Their approach aligns with the current trend of
building robust pipelines rather than relying on a
single algorithm. Patil et al. (2022) utilized
logistic regression for cardiovascular-disease
risk prediction. Despite its simplicity, logistic
regression remains highly interpretable and
clinically accepted. Their work reinforces the
importance of transparent models, especially in
healthcare, where decision-support systems
must provide clear justifications for predictions.
Buttar et al. (2024) focused on deep learning for
surveillance-video analysis, addressing
challenges of trust and reliability. Although their
domain differs from cardiology, the discussion
on trustworthy Al, model transparency, and
reliability is relevant to clinical contexts. These
principles inform ongoing efforts to develop
explainable phenotype-classification systems,
especially where model outputs influence
clinical decisions. Alsabhan and Alfadhly
(2025) compared multiple machine-learning
models for heart-disease diagnosis and
demonstrate clear performance differences
across algorithms.  Their  comprehensive
comparison contributes to benchmarking efforts
in cardiovascular Al systems. Their findings
emphasize the need for selecting appropriate
models based on data characteristics—an insight
highly relevant for designing fuzzy rule-based
phenotype classification models for rare genetic
cardiovascular diseases.

3. METHODS

This is where you put the math and algorithm.

3.1. Problem Formulation: Let
x € R%: Feature vector for a patient (e.g.,
ECG intervals, imaging measurements,
biomarkers, genotype features)
y € {1,2, ..., C}: Phenotype label (e.g., HCM,
DCM, ARVC, etc.).

Training dataset: D = {(x(")»y(n))}:ﬂ

M)
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Goal: learn a function f: R% —» y €
{1,2, ..., C} based on a fuzzy rule-based
system.

3.2. Fuzzy Variables and Membership
Functions:
Let each input feature x; (e.g., LV wall
thickness, QT interval) be partitioned into L;
fuzzy linguistic terms:
c/li = {AiltAiZ' "'!AiLi}

)

Each fuzzy set 4;; is characterized by a
membership function Hay R — [0,1]

Triangular membership:

0 X < al-j
Xim@is
IA Clij < X < bij
_ bij—aij
.uAl']'(xi) - Cij—Xi b < x: < c
cij—bij ij = A = Lij
0 X = Cij
(3) - -
Gaussian membership:
2
(xi—cij)
A\Xj) =exp|l————
.uAl]( l) p Zaijz

(4)
Parameters a;j, b;j, ¢;jo;; can be: set using
clinical cut-offs, or initialized heuristically
and then optimized during training.

.................

\
NG
- _/ ‘\\_

Figure 1: Memhership Fuscrion

3.3. Fuzzy Rule Base:
A typical fuzzy rule R, has the form:
Ry: IF xq is A1j{< AND x, is Azjg...AND

Xq IS Adj,’; THEN phenotype is ¢y

with weight wy.
Where: ¢, € {1, ..., C} is the predicted class
for rule k
wy, € [0,1]is a rule weight (confidence).
The firing strength of rule R;, for a given
patient x is:

Product t-norm: a,(x) = H;'i:l““ijk (x)

()

Minimum t-norm: a; (x) = ml,m [ﬂA..k (xl-)]
ij;

3.4.

3.5.

1.

(6)

Rule Evaluation

Rule Base

Figure 2: Fluw of Nezey rule-based classification

Inference and Aggregation: Define an
activation score for each class ¢ by
aggregating the rules that conclude class c:
Sc(x) = Xkicp Wi i (X)

()
Then compute normalized class membership
degrees:

Ic(x) =
(8)
where ¢ is a small constant to avoid division
by zero. The final predicted phenotype is:

. max _

P(x) = agce{1,.. CH ()

(9)

This corresponds to a multi-class
Sugeno/Mamdani-like fuzzy classifier with
defuzzification via argmax.

Sc(x)
E$n=1 Sm(x)+e

Learning Rule Parameters: We define a
parameter vector 6 containing:

Membership function parameters

(cij, 0ij o7 ayj, by, cij),

Rule weights wy,.

For each training sample (x™),y(™) define:
One-hot target vector t™ € {0,1}¢ with

Fuzzy output vector
™ = [@ (x™), ..., fic(x™)]

(10)
Loss function (cross-entropy): L(6) =
N B 6™ log (e (x; 0) + €) +
Allels (11
Where A is an #; regularization coefficient.
Parameters can be optimized using gradient-
based methods (if you implement
differentiable membership functions) or
heuristic optimization (GA, PSO, etc.).

Algorithm: Training the Fuzzy Rule-Based
Classifier

Initialize membership functions (clinical
thresholds or clustering).
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2. Initialize rule base (expert rules or data-
driven rule generation).
3. Repeat until convergence:
o  Forward pass to compute f¢(x™) for
all n.
e  Compute loss L(8).
e Update 6 via gradient descent or
chosen optimizer.

Repeat Unth Convergence

Figwie 2 Ty o ol e Saars vibe-tnoed Cwiliey

. J
3.6. Handling Class Imbalance: Define class-
weighted loss:
L(6) = —Xn=1Bymlog (ﬂy(m (x™;0) +
£)
(12)
where B, « Nic with N, the number of

samples of class c.

4. DATA AND PREPROCESSING

4.1. Dataset Description: The dataset for this
study comprised patients with five major
categories of rare inherited cardiovascular
diseases, including hypertrophic
cardiomyopathy (HCM), dilated
cardiomyopathy (DCM), arrhythmogenic
right ventricular cardiomyopathy (ARVC),
long QT syndrome (LQTS), and Brugada
syndrome. The final cohort included N
patients in total, with
Nucms Noems Narves Neors and - Nprygada
cases respectively, reflecting the naturally
imbalanced distribution of these phenotypes
in clinical practice. Inclusion criteria
typically comprised a confirmed or strongly
suspected diagnosis based on contemporary
guideline-directed criteria, availability of
core clinical, imaging, and ECG data, and
age above a predefined threshold (e.g., > 16
years), while patients with significant non-
cardiac comorbidities, poor-quality imaging
or ECG recordings, or incomplete key
variables were excluded. Multimodal data
were extracted from standard clinical
workflows, including 12-lead

electrocardiograms (ECG), transthoracic
echocardiography and/or cardiac magnetic
resonance (CMR), targeted or panel-based
genetic testing, and basic laboratory
investigations  (e.g.,  biomarkers  of
myocardial injury or strain). Together, these
sources provided a rich but heterogeneous
feature set spanning structural, electrical,
and genetic dimensions of disease, suitable
for phenotype classification using the
proposed fuzzy rule-based model.

Confusion matrx

o ' ’ ’

s

oM DeM ARVC LOTS Nrugacs
Fredicted abel
Figure 4: Confsvion Matrix

The figure (4) shows a confusion matrix
summarizing how the classifier assigns patients to
the five phenotypes HCM, DCM, ARVC, LQTS,
and Brugada. Each row corresponds to the true
diagnosis and each column to the predicted label,
with darker diagonal cells indicating correct
classifications. The model performs very well for
HCM and ARVC, correctly identifying most of
these cases (95 and 75 patients, respectively) and
only rarely confusing them with other phenotypes.
In contrast, DCM, LQTS, and Brugada are more
frequently misclassified: many true DCM, LQTS,
and Brugada cases are predicted as ARVC or
DCM rather than their own class, as reflected by
the sizeable off-diagonal counts in those columns.
This pattern suggests that the model is most
confident and  accurate  for  structural
cardiomyopathies with distinctive features (HCM
and ARVC), while phenotypes with subtler or
overlapping signatures, especially LQTS and
Brugada, remain more challenging to separate.

RR interval

-

PR interval

— n "
QRS complex
——

T wave
inversion
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The figure (5) illustrates a stylized single-lead
electrocardiogram trace with key temporal features
marked by colored arrows. The PR interval spans
from the start of atrial depolarization to the onset
of ventricular depolarization, while the QRS
complex highlights the sharp, narrow portion of
the waveform representing ventricular activation.
The QT interval covers the time from the
beginning of ventricular depolarization to the end
of repolarization, and the RR interval measures the
distance between two consecutive R peaks,
reflecting the heart rate. The ST segment is
indicated as the flat region following the QRS
complex, and an example of T-wave inversion is
labeled on the descending limb of the final
waveform, representing an abnormal
repolarization pattern. Together, these annotated
segments show the main ECG features that can be
guantified and used as input variables in the
proposed model.

LV Wall Lv
Thickness LVEDD Eject§on Enhancement

RV RV RV RV

Figure 6 lenaging Features

Late Gadolinium

The figure (6) presents four schematic cardiac
images that highlight the main structural and tissue
features extracted from echocardiography or
cardiac MRI. The first panel illustrates left
ventricular (LV) wall thickness, with a double-
headed arrow emphasizing the myocardial
thickness that is typically increased in
hypertrophic cardiomyopathy. The second panel
shows LV end-diastolic diameter (LV EDD),
where the arrow spans the LV cavity to depict
chamber enlargement, a hallmark of dilated
cardiomyopathy. The third panel focuses on LV
ejection fraction, with curved arrows indicating the
systolic inward motion of the LV walls and the
degree of cavity emptying, which reflects global
systolic function. The fourth panel displays areas
of late gadolinium enhancement as shaded regions
within the myocardium, representing fibrosis or
scar tissue detectable on contrast-enhanced MRI.
Together, these four views summarize the key
imaging features used by the model to distinguish

between different rare inherited cardiovascular

phenotypes.

4.2. Feature Extraction: Feature extraction was
performed to transform raw multimodal data
into a structured set of quantitative
predictors suitable for fuzzy modeling.
From 12-lead ECGs, we derived standard
time-domain features including heart rate,
PR interval, QRS duration, QT and QTc
intervals, and qualitative or semi-
guantitative indicators such as ST segment
elevation or depression and the presence of
pathological T-wave inversion or bundle
branch block. Echocardiography and cardiac
magnetic  resonance (CMR) provided
structural and  functional  parameters,
including maximal left ventricular (LV) wall
thickness, LV end-diastolic diameter
(LVEDD), LV ejection fraction (LVEF),
right ventricular (RV) dimensions, and,
where available, measures of late
gadolinium enhancement as a surrogate for
myocardial fibrosis. Genetic data were
summarized by encoding the presence or
absence of known or likely pathogenic
variants in disease-associated genes as
binary or categorical variables, with
optional grouping by gene family or
functional pathway. Demographic and
clinical variables such as age, sex, and
family history of sudden cardiac death or
cardiomyopathy were also incorporated as
features, providing important contextual
information that complements the imaging,
electrical, and genetic domains. All
continuous variables were reviewed for
plausibility, cleaned, and standardized prior
to fuzzification in the rule—based model.

4.3. Preprocessing: Preprocessing is a crucial
step in building reliable machine learning
models and typically includes handling
missing data, feature scaling, and splitting
the data for evaluation. Missing values can
bias models or cause algorithms to fail, so
we often use imputation, such as replacing
missing entries with the mean, median,
mode, or using more advanced methods like
k-nearest  neighbors or  model-based
imputation, depending on the data type and
distribution. Scaling ensures that features
are on a comparable scale, which is
especially important for distance-based or
gradient-based algorithms; a common
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x; =
(13)

method is z-score normalization, where each
feature x; is transformed as

_ Xi—Hi

i

with u; and o; being the mean and standard
deviation of that feature, so the transformed
feature has mean 0 and standard deviation 1.
Finally, to fairly assess model performance and
avoid overfitting, the dataset is split into training,
validation, and test sets (e.g., 60-20-20 or 70-15-
15), or alternatively k-fold cross-validation is used,
where the data is divided into k folds and the
model is trained and evaluated k times, each time
using a different fold as the validation set and the
remaining folds for training, providing a more
robust estimate of generalization performance.

5. EXPERIMENTAL SETUP

TP,
TP.+FP,

Precision: Precision, =

(16)
Fl-score: F1, = 2

Precision.XxSensitivity.

" Precision.+Sensitivity .

17

6. RESULTS

6.1. Quantitative Performance: On the held-

out test (or cross-validated) dataset, the
proposed fuzzy rule-based classifier
demonstrated competitive or superior
guantitative performance compared with
standard baseline models. For example, the
fuzzy model achieved an overall accuracy of
X% and a macro-F1 score of Y ,
outperforming logistic regression
(X%, Y,g) , support vector machines

5.1. Baseline Models: Baseline models provide Xsym%,Ysyn) , and  random  forests
simple but powerful reference points for (Xgrr%, Ygr) , particularly in  minority
evaluating more complex approaches. phenotypes such as ARVC and Brugada
Logistic regression is a linear classifier that syndrome. Macro-averaged ROC-AUC
models the probability of class membership values followed a similar pattern, with the
using a weighted combination of input fuzzy classifier yielding a mean AUC of
features, offering interpretability and fast AUCfy,,y, across all phenotypes, compared
training. Random forests are ensembles of with AUC,g, AUCsyy and AUCgp for the
decision trees that reduce overfitting by baselines. Importantly, per-class sensitivity
averaging  predictions ~ from  many and F1 scores indicated that the fuzzy model
bootstrapped trees, capturing nonlinear was better able to identify borderline and
relationships and feature interactions. less prevalent phenotypes without
Support vector machines (SVMs) aim to sacrificing performance on more common
find a decision boundary that maximizes the classes such as HCM and DCM. These
margin between classes and, with kernels, results suggest that combining soft decision
can model complex, non-linear decision boundaries with interpretable rule structures
surfaces. Finally, a small neural network can yield not only clinically transparent but
(e.g., a few fully connected layers with non- also  quantitatively robust  phenotype
linear activations) serves as a flexible classification in rare inherited
baseline capable of learning hierarchical cardiovascular disease.
feature representations without being too o Y
computationally expensive, providing a . Accuracy
bridge between classical ML models and 08 = Macro-Fi
deep learning architectures. . o

0.6
5.2. Evaluation Metrics: For each class, define: -
e . . e s TP, 204
Sensitivity (Recall): Sensitivity, = TPt PN, 5
<02
(14)
e e TN, 0.0
Specificity: Specificity, = TN1 PP, .
(15) o _
Fuzzy Logistic SVM Random
Regrassion Forest
Figure 7: Model Performance Comparison
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The figure (7) presents a bar chart comparing the
performance of four classification models—fuzzy
rule-based, logistic regression, support vector
machine (SVM), and random forest—using three
metrics: accuracy, macro-F1, and AUC. For each
model, three adjacent bars show that the fuzzy
classifier achieves roughly balanced and relatively
high values across all three metrics, indicating
solid overall performance. Logistic regression
performs slightly worse than the fuzzy model, with
lower accuracy and macro-F1, suggesting
limitations in capturing complex, non-linear
relationships. SVM improves on logistic
regression, showing modest gains in both accuracy
and macro-F1. Random forest attains the highest
AUC and competitive accuracy and macro-F1,
reflecting strong discriminative ability but at the
cost of reduced interpretability compared with the
fuzzy model. Overall, the chart illustrates that the
fuzzy classifier is competitive with, and in some
aspects comparable to, more complex baseline
models.

— AUC = 0.90
o —
0.8
a 0.6
o]
o= r
@ /
= 0.4 /
w 0.2
o
=
0.0
0.2
0.0 02 0.4 0.6 0.8 1.0 1.2
False Positive Rate
Figure ¥: ROC Carve

The figure (8) shows a receiver operating
characteristic (ROC) curve for a binary classifier.
The x-axis represents the false positive rate, and
the y-axis represents the true positive rate. The
dashed diagonal line is the line of no-
discrimination, corresponding to a random
classifier that performs no better than chance. The
colored curve above this line traces how the true
positive rate increases as the decision threshold is
varied. Because the curve bows clearly toward the
upper-left corner and has an area under the curve
(AUC) of 0.90, the model has strong
discriminative ability: in most cases it can
correctly distinguish positive from negative cases,
with relatively high sensitivity for a given level of
false positives.

6.2. Interpretability Analysis: Interpretability
of the proposed fuzzy rule—based model was
examined by inspecting individual rules and
their firing strengths for representative

6.3.

patients. Several high-weight rules were
found to align closely with established
clinical reasoning, for example: “IF LV wall
thickness is high AND LVEF is preserved
AND QTc is normal THEN phenotype is
HCM,” or “IF LV wall thickness is normal
AND LVEDD is increased AND LVEF is
reduced THEN phenotype is DCM.” For an
ARVC-like presentation, rules combining
mildly enlarged RV dimensions, reduced
RV function, and characteristic ECG
abnormalities (e.g., epsilon waves or T-
wave inversion in V1-V3) contributed
prominently to the predicted phenotype. By
visualizing rule firing strengths for
individual patients such as plotting the
degree to which each rule is activated it was
possible to see how borderline cases
engaged multiple, sometimes competing
rules with intermediate activation, leading to
mixed membership across phenotypes. In
contrast, typical, “textbook” cases showed
strong activation of one or two dominant
rules with high membership degree for the
corresponding phenotype and negligible
activation for others. This rule-level view
provides clinicians with an explicit, case-
specific explanation of why the model
favored a particular diagnosis and how
sensitive that decision is to changes in
underlying clinical measurements.

Case Studies: To further illustrate the
behavior of the model in realistic scenarios,
we examined individual patient case studies,
with a particular focus on borderline or
ambiguous presentations. In one case, a
young patient with moderately increased LV
wall thickness, mildly reduced LVEF, and
equivocal ECG abnormalities lay at the
intersection of HCM and DCM criteria.
Traditional classifiers such as SVM or
random forest produced a hard label (e.g.,
“HCM”) with little indication of diagnostic
uncertainty, whereas the fuzzy model
assigned substantial membership to both
HCM and DCM, explicitly reflecting the
mixed phenotype. Inspection of the
underlying rules showed that HCM-oriented
rules were activated by the increased wall
thickness and preserved cavity size, while
DCM-oriented rules were partially triggered
by the reduced ejection fraction, leading to a
nuanced output rather than an overly
confident single class. In another case,
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involving suspected ARVC with atypical
imaging but characteristic ECG changes, the
fuzzy system highlighted the dominant
contribution of specific ECG-based rules
despite only modest activation of structural
criteria, offering a transparent rationale for
classifying the patient as ARVC—a
rationale that was far less accessible in
black-box baselines, which simply output a
probability without revealing which features
or decision pathways drove the prediction.

7. DISCUSSION

The results of this study should be
interpreted within the broader clinical
context of managing rare inherited
cardiovascular diseases, where diagnostic
ambiguity, limited sample sizes, and
heterogeneous data are common. By
providing soft class memberships and
human-readable IF-THEN rules, the fuzzy
rule—based classifier offers a form of
decision support that is inherently
interpretable and more consistent with
how clinicians reason about overlapping
phenotypes, making it easier to
understand, critique, and integrate into
multidisciplinary discussions. The model’s
reliance on fuzzy sets and rule aggregation
also appears relatively robust to small,
noisy datasets, an important advantage
when large multi-center registries are not
available. However, several limitations
must be acknowledged: the cohort size
remains modest, the data were derived
from a single center (or a limited number
of centers), and the fuzzy rule base and
membership functions were optimized on
this specific population, raising concerns
about generalizability. External validation
in larger, geographically and ethnically
diverse cohorts is therefore essential
before clinical deployment. Looking
forward, the framework could be extended
by incorporating neuro-fuzzy architectures
that learn rule structures and membership
functions more flexibly from data, or by
integrating fuzzy logic with probabilistic
models (e.g., Bayesian networks) to better
represent uncertainty, prior knowledge,
and longitudinal changes in phenotype
over time.

8. CONCLUDING REMARKS

In summary, the proposed fuzzy rule-based
framework demonstrates that it is possible to
combine high predictive performance with
clinically meaningful interpretability for the
classification of rare inherited cardiovascular
phenotypes. By leveraging multimodal ECG,
imaging, genetic, and clinical features within
transparent fuzzy rules, the model achieves
performance that is competitive with, and in
some aspects comparable to, standard
machine-learning baselines while offering
clearer insight into why a particular phenotype
is predicted, especially for minority classes
such as ARVC and Brugada syndrome. These
characteristics suggest that the approach is
well suited for decision support in specialized
cardiomyopathy clinics, where both diagnostic
accuracy and explainability are essential.
Future work should include validation on
larger, multi-centre cohorts, prospective
evaluation in real-world workflows, and
exploration of hybrid strategies that combine
fuzzy reasoning with modern deep or
ensemble architectures to further enhance
robustness without sacrificing interpretability.
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