# **Journal of Rare Cardiovascular Diseases**

ISSN: 2299-3711 (Print) | e-ISSN: 2300-5505 (Online) www.jrcd.eu



**RESEARCH ARTICLE** 

# Relationship of Glycemic Control with Kidney Function Tests and Lipid Profile in Type 2 Diabetes Mellitus Patients in a Tertiary Care Hospital

# <sup>1</sup>Uma Kant Chaudhari\*, <sup>2</sup>Juhi Aggarwal, <sup>3</sup>Jyoti Batra, <sup>4</sup>Ashok Kumar

- <sup>1</sup>PhD Scholar, Department of Biochemistry, Santosh Medical College & Hospital, Santosh Deemed to be University, Ghaziabad, NCR Delhi.
- <sup>2</sup>Professor & HOD, Department of Biochemistry, Santosh Medical College & Hospital, Santosh Deemed to be University, Ghaziabad, NCR Delhi.

  <sup>3</sup>Research Dean & Professor, Department of Biochemistry, Santosh Medical College & Hospital, Santosh Deemed to be University, Ghaziabad, NCR
- <sup>4</sup>Professor and Head, Department of General Medicine, Santosh Medical College & Hospital, Santosh Deemed to be University, Ghaziabad, NCR Delhi

\*Corresponding Author Mr. Uma Kant Chaudhari

Article History

Received: 07.08.2025 Revised: 12.09.2025 Accepted: 14.10.2025 Published: 10.11.2025 Abstract: Background: Diabetes causes both microvascular complications, which comprise neuropathy, nephropathy and retinopathy and macrovascular complications, which comprise cardiovascular disease, stroke, and peripheral vascular disease. The aim of this prospective research study is to investigate the relationship between blood glucose levels, kidney function, and lipid profile in patients diagnosed with type 2 diabetes mellitus (T2DM). The variations in blood glucose levels significantly influence renal function and lipid metabolism in individuals with T2DM. Material and Methods: This study was conducted at Santosh Medical College and Hospital, Ghaziabad, Uttar Pradesh. 125 pre-diagnosed type 2 diabetic patients were taken as the study group and the same number of healthy individuals were taken as the control group. Inclusion criteria will include a confirmed diagnosis of Type 2 diabetes mellitus, 18 to 70 years of age, and willingness to participate in the study. Fasting and postprandial blood sugar, glycated haemoglobin (HbA1c), serum creatinine, urine microalbumin, T.Chol., TG, HDL, LDL and VLDL were estimated in both groups. Result: In our study, we found that there is a significant (p-value = 0.0001) rise in FBS, PPBS and HbA1c in the study group as compared to the control group. Serum creatinine and urine microalbumin in the study group were found to be significantly (p-value = 0.0001) elevated in the study group as compared to the control group. In Lipid Profile parameters, Total cholesterol, triglycerides, LDL and VLDL were significantly (p-value = 0.0001) higher in the study group as compared to the control group but there was no significant (p-value = 0.0361) difference in HDL cholesterol level between these two groups. Conclusion: A significant association of HbA1c with urine microalbumin and serum creatinine indicates that impaired blood glucose level causes nephropathy. This emphasizes the need for early detection of urine microalbuminuria in type 2 diabetic patients. Also, elevated blood glucose causes dyslipidemia which may cause cardiovascular disorders. The study suggests the need for effective diabetes control and the prevention of associated renal damage and cardiovascular risk factors. These findings may have implications for optimizing diabetes management strategies, including the importance of glycemic control in preserving kidney health and managing cardiovascular risk factors in this population.

Keywords: Type 2 diabetes; Glycemic control; Renal profile; Lipid parameters.

#### INTRODUCTION

Hyperglycemia, or increased blood glucose levels, is a hallmark of diabetes mellitus, which is described as "a group of metabolic diseases characterized by defects in insulin secretion, insulin action, or both." Type 1 diabetes is caused by an autoimmune-mediated destruction of beta cells of pancreas, causing insulin insufficiency and hyperglycemia; type 2 diabetes is caused by a diminished responsiveness to insulin (insulin resistance) and reduced insulin production by beta cells.(1)

Globally, the incidence of type 2 diabetes mellitus (T2DM) is rising at an alarmingly high rate, impacting the economy, living standards, public health, and healthcare system.(2)The International Diabetes Federation (IDF) found that 589 million adults with age between 20-79 years worldwide were suffering from diabetes in 2024; by 2050, that number is supposed to increase to 852.5 million.In India 89.8 million people are suffering from diabetes in 2024 and it expected to rise to 156.7 million by 2050.(3)

Elevated blood glucose levels brought on by a gradual impairment in insulin secretion or tissue resistance to insulin are the hallmarks of T2DM which is a complex, multisystemic metabolic disease. Insulin resistance and beta-cell dysfunction vary in severity in T2DM which is a widespread and diverse condition. A strong link exists between obesity and T2DM, mediated by central nervous system pathways. These pathways integrate data from the environment and peripheral organs to regulate appetite and energy expenditure.(4)



Diabetes results in macrovascular problems including peripheral vascular disease, cardiovascular disease, and stroke as well as microvascular problems like neuropathy, nephropathy, and retinopathy.(5)Anatomical, structural, and functional abnormalities that result in multiorgan dysfunction are among the vascular modifications linked to diabetes.(6)

The etiologic features of diabetic macrovascular (including big vessels, like arteries and veins) and microvascular (involving tiny vessels, like capillaries) abnormalities are similar. Through a variety of metabolic and structural abnormalities, such as the synthesis of AGE, aberrant initiation of signaling cascades (like PKC), increased synthesis of ROS, and abnormal activation of hemodynamic regulation systems (like RAS), chronic hyperglycemia plays a major part in the onset of vascular complications of diabetes.(7)



Fig 1: mechanisms for diabetes-associated endothelial dysfunction.

T1DM and T2DM lead to the development of diabetic nephropathy (DN) which is a critical and advancing complication of diabetes. DN being the main cause of ESRD, usually starts as microalbuminuria, which progress into overt albuminuria and finally renal failure. About 25% of type 2 diabetic patients suffer from microalbuminuria or a more severe stage of DN that deteriorate at a speed of 2% to 3% annually. Additional defining characteristics of DN include glomerular hyperfiltration and thickening of glomerular basement membranes, which cause mesangial extracellular matrix expansion and further increased excretion of albumin in urine, which progresses to renal failure and glomerular and tubular sclerosis. The risk factors for DN are obesity, hypertension, tobacco use, dyslipidemia, age of onset, duration of diabetes, and hyperglycemia.(7) Diabetic patients are at risk for the development of dyslipidemia and Diabetic nephropathy. Hyperglycemia causes lipid derangement and nephropathy. Elevated levels of serum cholesterol, triglycerides and lipoproteins are the main lipid derangements in diabetes which are common risk factors for coronary artery disease. It is found that elevated blood glucose levels and duration of diabetes are responsible for nephropathy and microalbuminuria.(8)

# MATERIALS AND METHODS

A Case-control study was planned to analyze the Relationship of Glycemic control with Kidney function tests and Lipid profile in Type 2 diabetes mellitus Patients (T2DM). This study was conducted on patients attending the OPD of the Department of General Medicine and the Department of Biochemistry of Santosh Medical College & Hospital, Ghaziabad, Uttar Pradesh. 125 pre-diagnosed type 2 diabetic patients were taken as the study group and the same number of healthy individuals were taken as the control group. Inclusion criteria will include a confirmed diagnosis of T2DM, 18



to 70 years of age, and willingness to participate in the study. Before registering for the study, informed written consent was taken from the participants, expressing their willingness to participate in the study. Individuals suffering from Type 1 Diabetes mellitus, hemochromatosis, chronic kidney disease, chronic liver disease, thyroid disorders, malignancies and patients taking lipid-lowering drugs were excluded from the study.

5 ml blood sample was collected from each subject after overnight fasting and transferred into EDTA (for glycated hemoglobin), sodium fluoride and potassium oxalate tube (for FBS) and plain tube (for T. Chol., TG, HDL and creatinine). 2 ml postprandial sample was collected in sodium fluoride and potassium oxalate tube (for PPBS). Spot urine sample was also collected from each subject for urine microalbumin estimation.

SPSS software was used for statistical analysis. Mean  $\pm$  Standard deviation, p-value and r - value were calculated. p-value  $\leq 0.05$  is considered significant and r - value  $\geq 0.5$  is considered significantly correlated.

#### **RESULTS AND OBSERVATIONS:**

| Table 1: Comparision of Blood sugar, HbA1c, S. Creatinine, T. Chol, HDL, TG, LDL, VLDL and Urin Microalbumin between study and control group |              |               |         |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|---------|--|
| Parameter                                                                                                                                    | Study group  | Control group | p value |  |
| FBS (mg/dl)                                                                                                                                  | 163.53±69.28 | 87.60±10.52   | 0.0001  |  |
| PPBS (mg/dl)                                                                                                                                 | 234.15±98.95 | 118.18±13.52  | 0.0001  |  |
| HbA1c (%)                                                                                                                                    | 8.00±1.26    | 4.84±0.38     | 0.0001  |  |
| S. Creatinine (mg/dl)                                                                                                                        | 1.45±0.64    | 0.80±0.2      | 0.0001  |  |
| T. Cholesterol (mg/dl)                                                                                                                       | 210.65±40.80 | 142.51±24.52  | 0.0001  |  |
| HDL (mg/dl)                                                                                                                                  | 44.68±5.52   | 46.05±4.77    | 0.0361  |  |
| TG (mg/dl)                                                                                                                                   | 200.36±67.15 | 126.03±27.29  | 0.0001  |  |
| LDL (mg/dl)                                                                                                                                  | 125.90±35.18 | 71.25±23.10   | 0.0001  |  |
| VLDL(mg/dl)                                                                                                                                  | 40.07±13.42  | 25.20±5.46    | 0.0001  |  |
| Urine Microalbumin (mg/24hr)                                                                                                                 | 35.50±11.52  | 15.87±3.85    | 0.0001  |  |

Table 1 shows average blood glucose, HbA1C, serum creatinine, Total cholesterol (T. Chol.), high density lipoproteins (HDL) and triglycerides (TG) and urine microalbumin levels both in the diabetic patients (the study group) and the control group. The T2DM subjects presented significantly higher concentrations of FBS, PPBS, HbA1c, serum creatinine, T. Chol., TG and urine microalbumin (p<0.05) as compared to the control subjects. But there is insignificant higher (p>0.05) level of HDL in the control group as compared to the study group.

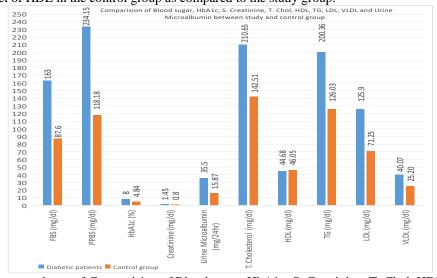



Chart 1: Shows the comparisons of Comparision of Blood sugar, HbA1c, S. Creatinine, T. Chol, HDL, TG, LDL, VLDL and Urine Microalbumin between study and control group.



| Table 2: Correlation of HbA1c with S. Creatinine, Urine Microalbumin, |
|-----------------------------------------------------------------------|
| T. Chol, HDL, TG, LDL and VLDL in study group                         |

| Study group |                    | r value     |
|-------------|--------------------|-------------|
|             | Serum Creatinine   | 0.480150406 |
|             | Urine microalbumin | 0.560574465 |
|             | T. cholesterol     | 0.681446997 |
| HbA1c       | HDL                | -0.11896668 |
|             | TG                 | 0.728454744 |
|             | LDL                | 0.530812046 |
|             | VLDL               | 0.728454744 |

There is (r > 0.5) significant positive correlation between HbA1c level and urine microalbumin, Total cholesterol (T. Chol.) and triglycerides (TG) in T2DM subjects. There is a moderate correlation between HbA1c level and serum creatinine (r = 0.48) in T2DM subjects. However there is no correlation between HbA1c and HDL in the same group.

Table 3: Correlation of HbA1c with S. Creatinine, Urine Microalbumin, T. Chol, HDL, TG, LDL and VLDL in control group

| 1. Onto, 122, 13, 222 and 122 in control group |                    |             |  |  |
|------------------------------------------------|--------------------|-------------|--|--|
| Control group                                  |                    | r value     |  |  |
|                                                | Serum creatinine   | 0.25245638  |  |  |
|                                                | Urine microalbumin | 0.216060412 |  |  |
|                                                | T. cholesterol     | 0.234952021 |  |  |
| HbA1c                                          | HDL                | -0.28593647 |  |  |
|                                                | TG                 | 0.073688756 |  |  |
|                                                | LDL                | 0.291055547 |  |  |
|                                                | VLDL               | 0.073688756 |  |  |

There is no significant correlation between HbA1c level and serum creatinine, urine microalbumin, T. Chol., HDL, TG and LDL in the control group.

# **DISCUSSION**

In the study group our results show a significant positive correlation of HbA1c with TG (r=0.728) and total cholesterol (r=0.681). Arshad Hussain et al in their study in 2015 on 401 type 2 diabetes patients and Houda et al in their study conducted between 2017 and 2018 found a similar result to the present study.(9,10) Higher HbA1c levels have been linked to dyslipidemia, which is represented by raised LDL cholesterol and triglyceride levels. The lipid profile may deranged as a result of poor glycaemic control's impact on lipid metabolism. Moreover, hyperglycemia can exacerbate inflammation and oxidative stress, which can lead to dyslipidemia.(11,12) The hydrolysis of triglyceride-rich lipoproteins is greatly hampered by the strong inhibition

of lipoprotein lipase synthesis that occurs due to diminished insulin activity. This result in rise in Triglyceride-rich lipoproteins level in blood and delayed removal of chylomicron and VLDL from blood. Another consequence of insulinopenia is a significant rise in lipolysis in adipose tissue that results in the influx of free fatty acids into the bloodstream. Increased production and release of VLDL are all results of enhanced TG synthesis in the liver which is a consequence of a higher fatty acid supply to the liver. In type 2 diabetic individuals, a decline in glycemic control will exacerbate their underlying dyslipidemia, resulting in more marked increases in blood triglyceride levels. If fresh VLDL is generated at a significantly higher rate, LDL levels may increase subsequently.(13)Compared to other lipid abnormalities, hypertriglyceridemia is more prevalent in



2 diabetes mellitus patients.(14)However Alzahrani et al in their study found that HbA1c has no correlation with total cholesterol.(2) In a study conducted in 2017 it was suggested that insulin resistance has a major part in the development of diabetic dyslipidemia.(9)

Our study also showed a significant correlation of HbA1C with urine microalbumin (r=0.56) and serum creatinine (r=0.48). Similar results were found by Khadka et al.(15) C. C. Hsu et al in their study concluded that higher HbA1c is associated with the development of microalbuminuria in type 2 diabetes patients.(16) One of the main causes of diabetic nephropathy (DN) is persistent hyperglycemia. The polyol and sorbitol pathways, among other collateral metabolic processes, are stimulated in the presence of elevated blood glucose.(17,18) Metabolic imbalance brought on by excessive collateral metabolism results in biochemical abnormalities in important tissues, including the kidney, which alter structure and function irreversibly. Glomerular endothelial cells (GECs), mesangial cells (MC), podocytes, and endothelial cells are the primary cellular targets of hyperglycemia injury in DN. DN is frequently called a "podocyte centrality" disease because of the high apoptotic susceptibility of highly specialized podocytes, which raises glomerular permeability.(18)

Advanced glycation end products (AGE), which are also implicated in the pathophysiology of DN, can accumulate when blood glucose levels are elevated.(19) AGE is synthesized from the spontaneous reaction between glucose and proteins predominantly on longlived structural proteins.(20) Nuclear factor κB (NF-κB) and PKC are two transcription factors linked to the development of DN that are expressed and activated as a result of AGE. Both direct (via AGE receptors) and indirect (by the creation of free oxygen radicals, which results in the production of cytokines, adhesion molecules, and chemokines) effects are possible.(21,22)

### CONCLUSIONN

The relationship between glycemic control, kidney function tests, and lipid profiles in Type 2 diabetes mellitus (T2DM) patients are multifaceted and crucial for managing the conditions effectively. A significant association of HbA1c with urine microalbumin and serum creatinine indicate that impaired blood glucose level causes nephropathy. This emphasizes the need for early detection of urine microalbuminuria in type 2 diabetic patients. Also elevated blood glucose causes dyslipidemia which may cause cardiovascular disorders. The study suggests the need for effective diabetes control and the prevention of associated renal damage cardiovascular risk factors. These findings may have implications for optimizing diabetes management strategies, including the importance of glycemic control kidney preserving health and cardiovascular risk factors in this population.

Abbreviation: T. Chol. =Total cholesterol, TG= triglycerides, HDL=high density lipoproteins, LDL= low density lipoproteins, VLDL= very low density lipoproteins, DN=diabetic nephropathy, RAS=reninangiotensin system, AGE=advanced glycation end products, FFA=free fatty acid, RAGE= receptors for AGE, ROS=reactive oxygen species, PKC=protein kinase C, ESRD= end-stage renal disease.

# REFERENCES

- 1. American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care. 2014 Jan 1;37(Supplement\_1):S81–90.
- Alzahrani SH, Baig M, Aashi MM, Al-shaibi FK, Alqarni DA, Bakhamees WH. Association between glycated hemoglobin (HbA1c) and the lipid profile in patients with type 2 diabetes mellitus at a tertiary care hospital: a retrospective study. DMSO. 2019 Aug; Volume 12:1639–44.
- American Diabetes Association Professional Practice Committee, ElSayed NA, Aleppo G, Bannuru RR, Bruemmer D, Collins BS, et al. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2024. Diabetes Care. 2024 Jan 1;47(Supplement\_1):S20-42.
- Młynarska E, Czarnik W, Dzieża N, Jędraszak W, Majchrowicz G, Prusinowski F, et al. Type 2 Diabetes Mellitus: New Pathogenetic Mechanisms, Treatment and the Most Important Complications. IJMS. 2025 Jan 27;26(3):1094.
- Deshpande AD, Harris-Hayes M, Schootman M. Epidemiology of Diabetes and Diabetes-Related Complications. Physical Therapy. 2008 Nov 1;88(11):1254–64.
- 6. Rahman S, Rahman T, Ismail AA, Rashid ARA. Diabetes-associated macrovasculopathy: pathophysiology and pathogenesis. Diabetes Obesity Metabolism. 2007 Nov;9(6):767–80.
- Cade WT. Diabetes-Related Microvascular and Macrovascular Diseases in the Physical Therapy Setting. Physical Therapy. 2008 Nov 1:88(11):1322–35.
- Aggarwal J, Chaudhari UK, Batra J, Kumar SS. Dyslipidemia And Nephropathy In Diabetes Mellitus: A Review. CM. 2023 Feb 14;(25):1192– 6.
- 9. Hussain A, Ali I, Ijaz M, Rahim A. Correlation between hemoglobin A1c and serum lipid profile in Afghani patients with type 2 diabetes: hemoglobin A1c prognosticates dyslipidemia. Therapeutic Advances in Endocrinology. 2017 Apr;8(4):51–7.
- 10. El Alami H, Haddou I, Benaadi G, Lkhider M, Wakrim L, Allali M, et al. Prevalence of dyslipidemia and the relationship between HbA1C and lipid profile in Moroccan patients with T2DM: a cross-sectional study. Pan Afr Med J [Internet]. 2022 [cited 2025 Aug 2];43. Available from: https://www.panafrican-med-journal.com/content/article/43/86/full



- 11. Jalal DA, Vásárhelyi B, Blaha B, Tóth Z, Szabó TG, Gyarmati B. Interrelationship of hemoglobin A1c level lipid profile, uric acid, C-reactive protein levels and age in a large hospital database. Molecular and Cellular Probes. 2023 Dec;72:101933.
- 12. Sheth J, Shah A, Sheth F, Trivedi S, Nabar N, Shah N, et al. The association of dyslipidemia and obesity with glycated hemoglobin. Clin Diabetes Endocrinol. 2015 Dec;1(1):6.
- 13. Kumar S, Kumari B, Kaushik A, Banerjee A, Mahto M, Bansal A. Relation Between HbA1c and Lipid Profile Among Prediabetics, Diabetics, and Non-diabetics: A Hospital-Based Cross-Sectional Analysis. Cureus [Internet]. 2022 Dec 24 [cited 2025 Aug 1]; Available from: https://www.cureus.com/articles/128501-relation-between-hba1c-and-lipid-profile-among-prediabetics-diabetics-and-non-diabetics-a-hospital-based-cross-sectional-analysis
- 14. Naqvi S, Naveed S, Ali Z, Ahmad SM, Asadullah Khan R, Raj H, et al. Correlation between Glycated Hemoglobin and Triglyceride Level in Type 2 Diabetes Mellitus. Cureus [Internet]. 2017 June 13 [cited 2025 Aug 1]; Available from: http://www.cureus.com/articles/7286-correlation-between-glycated-hemoglobin-and-triglyceride-level-in-type-2-diabetes-mellitus
- 15. Khadka B, Tiwari ML, Timalsina B, Risal P, Gupta S, Acharya D. Prevalence and Factors Associated with Microalbuminuria among Type 2 Diabetic Patients: A Hospital Based Study. JNMA J Nepal Med Assoc. 2018;56(209):516–21.
- 16. Hsu CC, Chang HY, Huang MC, Hwang SJ, Yang YC, Lee YS, et al. HbA1c variability is associated with microalbuminuria development in type 2 diabetes: a 7-year prospective cohort study. Diabetologia. 2012 Dec;55(12):3163–72.
- Giacco F, Brownlee M. Oxidative Stress and Diabetic Complications. Schmidt AM, editor. Circulation Research. 2010 Oct 29;107(9):1058– 70
- Wu T, Ding L, Andoh V, Zhang J, Chen L. The Mechanism of Hyperglycemia-Induced Renal Cell Injury in Diabetic Nephropathy Disease: An Update. Life. 2023 Feb 15;13(2):539.
- Balakumar P, Arora MK, Reddy J, Anand-Srivastava MB. Pathophysiology of Diabetic Nephropathy: Involvement of Multifaceted Signalling Mechanism. Journal of Cardiovascular Pharmacology. 2009 Aug;54(2):129–38.
- Makita Z, Yanagisawa K, Kuwajima S, Yoshioka N, Atsumi T, Hasunuma Y, et al. Advanced glycation endproducts and diabetic nephropathy. Journal of Diabetes and its Complications. 1995 Oct;9(4):265–8.
- Forbes JM, Cooper ME, Oldfield MD, Thomas MC. Role of Advanced Glycation End Products in Diabetic Nephropathy. Journal of the American

- Society of Nephrology. 2003 Aug;14(suppl\_3):S254–8.
- 22. Wu XQ, Zhang DD, Wang YN, Tan YQ, Yu XY, Zhao YY. AGE/RAGE in diabetic kidney disease and ageing kidney. Free Radical Biology and Medicine. 2021 Aug;171:260–71.