Journal of Rare Cardiovascular Diseases

ISSN: 2299-3711 (Print) | e-ISSN: 2300-5505 (Online) www.jrcd.eu JOURNAL OF RARE CARDIOVASCULAR DISEASES

RESEARCH ARTICLE

A Mathematical Model to Prevent the Growth of Bacterial Colony Produce Toxic Substances

Rajan Kumar Sharma¹, Pradeep Kumar Singh¹, Santosh Kumar Dixit², Akhilesh Gupta¹ Syed Suboor Aziz³ and Sudhir Singh⁴

¹Department of Basic Sciences and Humanities, Pranveer Singh Institute of Technology, Kanpur (U.P.), India.

*Corresponding Author Rajan Kumar Sharma

Article History

Received: 21.09.2025 Revised: 30.09.2025 Accepted: 22.10.2025 Published: 12.11.2025 **Abstract:** Given their significance in our surroundings, the study of bacterial population models is highly relevant to population dynamics. They are crucial to the applications of various industries, including food production and fermentation technology. When dangerous bacteria enter the body and proliferate, it can lead to a bacterial infection and sickness. These infections can range in severity from localized problems like skin abscesses to widespread problems like sepsis, and they can affect different sections of the body. In the present study is oriented for controlling the growth of bacterial colonyby mathematical modelling based on Malthusian population dynamics growth modelis discussed in limited environment for which mortality depends on increasing density of bacteria's and the concentration of the toxic products produced by bacteria in the cultures.

Keywords: Population of bacteria, toxic products, mortality, environment.

INTRODUCTION

Bacteria are single-celled organisms that develop in diverse environments[1]. These organisms can live on earth, water, and inside the intestines of humans as well as other living beings. The relationship between bacteria and humans is very complex. Sometimes bacteria help with our digestive system. Furthermore, bacteria are terrible because they can cause illnesses like pneumonia methicillin-resistant Staphylococcus (MRSA).Bacteria are classified in the forms of prokaryotes, which are single-cell organisms with a simple interior structure, without nucleus, with DNA which floats independently and collected protein with aminoacid[2,3].Bacterial cells typically have two protective layers: an inside cell membrane and an exterior cell wall. However, certain bacteria lack a cell wall, such as Mycoplasma. But some bacteria, like mycoplasma, have not any cell wall. There are three types of bacteria sizewise. First are round bacteria called Cocci, second are cylindrical type are called as Basilli; and the third are spiral bacteria, called Spiriila and fourth are vibrowhich are curved type [4]

Numerous dangerous bacterial species are the cause of infections [5,6]. They were the source of numerous infectious diseases, including dental decay, syphilis, diphtheria, pneumonia, and tuberculosis. which are unfriendly, and antimicrobial medications can counteract their effects.

One of the most crucial ways to prevent illness in all of them is to take precautions. Sterilization, heat, disinfectants, UV radiation, pasteurization, boiling, and other methods can eradicate the majority of these pathogenic microorganisms.

Fig1: Image of Bacteria

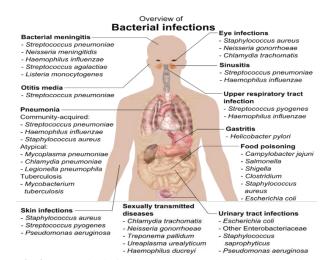


Fig 2: Bacterial infections and related bacterial species

In India basically some types of bacteria have been found named as asE.coli, S.pneumoniae, K.pneumoniae, S.aureus and A.baumanii to be the deadliest pathogens now days[7]. A study in The Lancet states that diseases brought on by the aforementioned germs collectively killed over 6.8 lakh people in India in 2019. Although E. Coli, which causes pneumonia, urinary tract infections, and diarrhea, among other things, killed up to 1.6 lakh people nationwide, S. pneumoniae, K. pneumoniae, S.

²Department of Applied Mathematics, Amity school of Engineering and Technology, Amity University Patna (Bihar), India.

³Department of Master of Computer Applications, Pranveer Singh Institute of Technology, Kanpur (U.P.), India.

⁴Department of Applied Science, Accurate Institute of Management and Technology, Greater Noida, (U.P), India.

aureus, and A. baumannii killed 1.4 lakh, 1.3 lakh, 1.2 lakh, and 1.1 lakh people, respectively.

The Lancet study is based on 33 species' deaths from bacterial illnesses, including all five of the previously listed species. In total, the report shows, 13.7 people died due to bacterial infections in India in 2019[8, 9]. The other common bacteria responsible for infection-related deaths included Salmonella Typhi, non-typhoidal Salmonella and Pseudomonas aeruginosa among others.

Table-1: Top five death causing bacteria in India

S.No.	Pathogen	Death Count	Death rate per 100,000 population
1	E. Coli	1.6 Lakh	16.1
2	S-Pneumonia	1.4 Lakh	14.4
3	K-Pneumoniae	1.3 Lakh	12.2
4	S-Aureus	1.2 Lakh	12.8
5	A-Baumannii	1.1 Laks	11

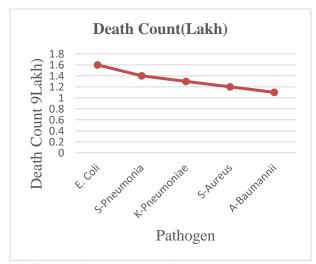


Fig-3: Mortality due to bacteria

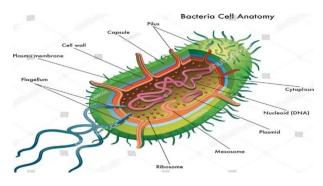


Fig-4: Bacteria Cell

Bacterial Growth Curve

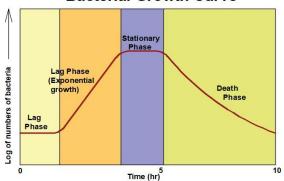


Fig 5: Bacterial Growth Curve

Source: https://theory.labster.com/bacterial-growth-curve/

The Bacteria that are injected into a new family do not divide right away. The time frame in which the number of cells does not rise is known as the lag phase. Bacteria are ready to divide their cells when the lag phase is over. Bacterial generation time is often measured during the log phase, when it is shortest. The growth of bacteria achieves a stationary phase when the number of cells generated equals the number of cells dying, meaning that there is no net increase in the bacterial population due to cell division and cell death. The number of bacteria continuously declines during the death or decline phase, meaning that more cells die than are generated.[10]

1) The simplest exponential growth model for human as well as for bacterial population due to Malthus[11] is $\frac{dB}{dt} = \alpha B$, t > 0

Where B(t) is the number of individual in population dynamics and $\alpha > 0$ is the specific growth rate of the population. But this model is valid in unlimited environment.

2) The population density first increases, but due to at higher density the rate of increase decreases Perl[12] modified the above population growth model as $\frac{dB}{dt} = \alpha B - \beta$, t > 0,

 β > 0, which is the degree to which the bacterial growth reduced due to density increase.

- 3) Different models for growth of bacterial colonies in nutrient medium have been discussed by Kapur, Teissier, Shehata and Marr related to population growth of bacterial coloney[13,14,15]
- 4) In certain bacterial colonies, toxic substances are produced by bacteria which become a limiting factor to their further growth by rapid increase the mortality rate under toxic effects.

In the present abstract we shall develop a mathematical model for controlling the bacterial population growth which produced toxic substances under following assumption

 a) Mortality depends on increasing density of population of bacteria

b) There is a rapid decrease in the number of bacteria from the environment due to production of toxic substances by bacteria and population tends to extinction.

Formulation of the model and its solution: Consider B(t) the total number of bacteria at a time t. The change in the number, $\frac{dB}{dt}$ is equal to differences of birth rate and death rate. Assumeind the death rate id effected by two factors increasing density of bacterial population and secondly increasing concentration of toxic substances produced by bactria ,so the bacterial population growth model as $\frac{d\vec{B}}{dt} = \alpha B - \beta B^2 - \mu c B^n, t > 0$...(1)

Where μ is a positive constant c represents the concentration of toxic substances onwhich mortality depends.

Now we further suppose that the toxic substance being produced at a constant rate r per number of bacteria, then

Now Or

Where C is constant of integration

The initial condition $B(0) = B_0$

Case 1:For n = 1, equation(2) become

$$\frac{dB}{dt} = B(\alpha - \mu c)B - \beta B^2$$

 $\frac{dB}{dt} = B(\alpha - \mu c)B - \beta B^2)$ Let the growth rate $r = \alpha - \mu c$ and carrying capacity

$$K = \frac{r}{\beta}(r > 0) \text{ with } B(0) = B_0$$
Then
$$B(t) = \frac{K}{1 + \left(\frac{K}{B_0} - 1\right)e^{-rt}} \text{ where } r = \alpha - \mu c, K = \frac{r}{\beta}$$

If $r \le 0$ then $B(t) \to 0$ as $t \to \infty$

So the bacterial population tends to zero that is population tends towards extinction.

Case 2: For n = 2,

 $B^n = B^2$ so the mortality terms for bacterial colony becomes $(\beta + \mu c)B^2$

Now equation (2) becomes
$$\frac{dB}{dt} = \alpha B - (\beta + \mu c)B^{2}$$
Gives $B(t) = \frac{K}{1 + (\frac{K}{B_{0}} - 1)e^{-\alpha t}}$ where $k = \frac{\alpha}{\beta + \mu c}$

That is the growth rate of bacterial colony is α .

Results and Discussion:

Equilibria satisfy
$$f(B) = \alpha B - \beta B^2 - \mu c B^n = 0$$

Let the Trivial equilibrium B = 0 and positive equilibria $B^* > 0$ satisfies

$$\alpha - \beta B^* - \mu c (B^*)^{n-1} = 0$$
 For $n=1$ give $B^* = \frac{\alpha - \mu c}{\beta}$

For n > 1 it is a non-linear algebraic equation existence and number of positive roots depends on parameters Linear Stability:

Now
$$f'(B) = \frac{d}{dB}(\alpha B - \beta B^2 - \mu c B^n)$$

= $\alpha - 2\beta B - \mu c n B^{n-1}$

- (i) An equilibrium B^* is stable if $f'(B^*) < 0$ and unstable if $f'(B^*) > 0$
- (ii) At B = 0, $f'(o) = \alpha$, so B = 0 is unstable when $\alpha > 0$ and stable when $\alpha < 0$
- (iii) If $\alpha = 0$ degenerate case

REFERENCES:

- 1. MarlisDenk-Lobnig, Kevin B Wood, Antibiotic resistance in bacterial communities, Current Microbiology, Volume Opinion in 74.2023.102306.ISSN 1369-5274.
- 2. 2.Gholami, Dariush&Emruzi, Zeinab&Noori, Alireza&Aminzadeh, Saeed. (2021). Advances in bacterial identification and characterization: methods and applications. 10.22104/ARMMT.2020.4319.1044.(DNA)
- 3. Yuki Kitahara, Sven van Teeffelen,:Bacterial growth — from physical principles to autolysins, Current Opinion Microbiology, Volume 74, 2023, 102326, ISSN 1369-5274,
- https://doi.org/10.1016/j.mib.2023.102326. 4.
- Anderson, Kevin & Mendelson, Neil Watkins, Joseph. (2000). A New Mathematical Approach Predicts Individual Cell Growth Behavior using Bacterial Population Information. Journal of theoretical biology. 202. 87-94. 10.1006/jtbi.1999.1051.
- 5. Dhakal M, Singh BK, Azad RK. Mechanistic Models of Virus-Bacteria Co-Infections in Humans: A Systematic Review of Methods and Assumptions. Pathogens. 2025;14(8):830. Published 2025 Aug 21. doi:10.3390/pathogens14080830
- Brhane, K.W., Ahmad, A.G., Hina, H. et al. Mathematical modeling of cholera dynamics with intrinsic growth considering constant interventions. Sci Rep 14, 4616 (2024).https://doi.org/10.1038/s41598-024-55240-0.
- WHO bacterial priority pathogens list, 2024 (Areport): Bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance
- 9. 8.Ikuta, KevinS et al.: Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019(A report in The Lancet Journal), Volume 400, Issue 10369, 2221 – 2248
- 10. Allen RJ, Waclaw B. Bacterial growth: a statistical physicist's guide. Rep Prog Phys. 2019 Jan;82(1):016601. doi: 10.1088/1361-6633/aae546. Epub 2018 Oct 1.
- 11. Rolfe MD, et al; Lag phase is a distinct growth phase that prepares bacteria for exponential and involves transient growth metal accumulation. I Bacteriol. 2012 Feb;194(3):686-701.
- 12. .Malthus, T.R., An essay on the principles of population, St. Paul's London (1978).

- 13. .Perl,R., The Biology of population growth,Knopf,New York (1925)
- 14. Kapur, J.N., Mathematical models in Biology and Medicine, Affilited Easr-West press, New Delhi (1985)
- 15. Teissier, G. Croissaince des populations bacteriennes concentration on the growth of Escherichia coli, J. Bacteriol, 107, 210-16 (1971).
- 16. Shehata, T. E. and Marr, A. G., Effect of nutrient concentration on the growth of Escherichia Coli. *J Bacteriol*, 107, 210-216, 1971.