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INTRODUCTION

Cataracts, diabetic retinopathy and glaucoma are
considered as some of the most common retinal diseases
which continue to contribute to vision loss and blindness
on a global scale [2, 5, 8]. If these conditions go
unnoticed and are not detected early, they lead to
irreversible vision loss and pose a significant burden to
healthcare systems, especially where access to trained
optometrists is limited [2, 4]. Details of retinal imaging
can be appreciated by Optical Coherence Tomography
(OCT) and fundus photography which helps the
clinicians to detect the abnormality. Despite the fact,
manual diagnosis is very time-consuming, subjective,
and inconsistent, particularly in rural or far areas, this
lack of infrastructure [1, 4]. The use of automated
systems based on machine learning (ML) and deep
learning (DL) could be a viable opportunity to increase
the efficiency and accuracy of diagnostics [1, 5, 7]. With
the recent developments in artificial intelligence in
medical imaging, digging in the complex features
between retinal image CNNSs have surpassed predictions
[1, 4, 5]. Studies like Junayed et al. (2021) and Baba et
al. Custom CNNs have demonstrated high accuracy in
detecting cataracts [1] with figures greater than 99.13%,
while other retinal disorders [4] have yielded over 98%
results. And even in such later papers they still gave
importance to traditional ML models like SVM and
Logistic Regression as they could be easily interpreted
and handled in less resource intensive settings [3, 8].
However, these works barely integrated custom CNNs
with ML classifiers or deployed practical tools, such as
web applications or post-processing scripts, to facilitate
clinical workflows [3, 7]. In this paper we propose an
automated system for classifying retinal images as
cataract, diabetic retinopathy, glaucoma, or normal. The
developed system extracts hierarchical features using a
custom-CNN and utilizes features from intermediate
layers of the CNN for SVM and LR models. A web

application built with Flask allows for real-time
predictions, and a script organizes images into folders
(grouped by the type of disease) based on the outputs of
the model. The dataset, consisting of roughly 500 images
per class, is then standardized and augmented to build
model robustness.

1.1 Background

Ocular diseases are often diagnosed with retinal imaging
techniques including optical coherence tomography
(OCT) and fundus photography [4, 9]. Automation
minimizes reliance on specialized knowledge, allowing
for rapid screening and swift interventions. CNNs
perform exceptionally well at capturing spatial patterns
and ML models such as SVM and LR are an interpretable
alternative [3, 4, 8]. So, combining these modalities with
a more user-friendly interface will also make them more
applicable to real clinical setting.

1.2 Problem Statement

The diagnosis of retinal diseases is time-consuming and
often delayed owing to a lack of specialist services
especially in under-served areas [2, 4]. Current
automated systems perform well but either rely on
complex architectures or go over of concept, limiting
access and scalability by not providing full deployment
solution [1, 7]. An efficient, accurate, and easy to use DL
and ML system suitable for deployment would be a
combination of the latest high-level concepts with
applicable real-world tools.

1.3 Objectives

Build a CNN model to accurately classify the retinal
images into the cataract, diabetic retinopathy, glaucoma
and normal class.

- Write the SVM and LR models for comparison
purposes with the use CNN features

- Build Flask Web App for real time prediction on retinal
disease
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- Write a script to sort images into disease-specific
folders according to what the model predicts.

1.4 Scope

This Project is to Classify Retinal Images using a Custom
CNN and ML models (SVM, LR) where images turned
out to be 128 x 128 pixels RGB. System contains web
interface and image organizing script, does not contain
non-image based diagnosis and advanced transfer-
learning model the dataset is thought to be balanced
along with preprocessing and validation for quality
assurance.

LITERATURE REVIEW

Many automated approaches have been reviewed for the
detection of several common retinal diseases such as
cataracts, diabetic retinopathy, glaucoma, and other
ocular abnormalities using machine learning (ML) and
deep learning (DL) methods. They were designed to
overcome the drawbacks of manual diagnosis, which is
time-consuming, subjective and generally impractical in
low-resource settings, where there is a shortage of
trained optometrists to perform screening [1,4].
Ophthalmic imaging technology has automated
screening methods with retinal images like fundus
photography and Optical Coherence Tomography
(OCT).

Junayed et al. CataractNet: Automated cataract detection
in fundus image using deep neural network that achieves
99.13% accuracy (2021). The model minimized
computational costs relative to pre-trained CNNs by
using smaller kernels and layers and minimizing
overfitting via data augmentation on 4,746 images [1].
Similarly, Baba et al. (2024) reported a custom CNN
with a testing accuracy of 98% and a loss of 0.051 after
classifying the OCT images into normal, choroidal
neovascularization (CNV), diabetic macular edema
(DME), and Drusen, outperforming traditiona ML and
transfer learning Techniques [4]. Ryan et al. Hossain et
al. [5] compared ocular disease detection using pre-
trained CNNs (VGG-16, VGG-19, ResNet-50, ResNet-
152v2) with ResNet-152v2 showing a training accuracy
of 90.36% with well-tuned models showing high
performance with minimal modifications.

Traditional ML approaches were also tested. Novita et al.
A Random Forest model was used by Halperin 2025 to
predict cataract risk using 11 clinical variables resulting
in an accuracy of 92.0% and F1 score of 92.4%, with lens
opacity and visual acuity as major predictors [3]. Tiwari
et al. Fusion of CNNs (VGG16, MobileNetV2,
InceptionV3) and SVMs for classification of ocular
toxoplasmosis was performed with up to 93.9% accuracy
[8] respectively. Zhao et al. Park et al. [9] employed few-
shot learning to classify inherited retinal disorders
demonstrated high classification accuracies (97.4—
98.3%) with limited data (2,317 OCT images), showing
robustness in data-scarce cases. Sharath Kumar et al. By
using two-field fundus photography, [10] proposed an

automated diabetic retinopathy detection system based
on wavelet decomposition and histogram analysis with a
sensitivity of 80% and specificity of 50% (2016).

However, advanced DL techniques have exhibited the
promise in certain applications. Mohan et al. 6) A Deep-
Learning Tool for Glaucoma Detection by S. Jain et
al.(2025) employed ResNet and Brownian-Butterfly
Algorithm for features extraction with the KNN
classifier attaining (100%) accuracy [5]. Biswas et al.
Nandanan et al2 used ResNet50, Dense net and Efficient
Net in ensembling model to classify cataract, diabetic
retinopathy, glaucoma and normal as subjects and
achieved 92% accuracy and AUC-ROC score of 1.00 [7].
Yadahalli et al. 11] showed that Bilateral U-Net
outperformed other models on glaucoma detection using
the same architecture yielding accuracies up to 92.4%,
across different datasets. Adriman et al. Liu et al [12]
detected diabetic retinopathy using LBP with ResNet,
DenseNet and DetNet separately and obtained accuracy
of max 96.35%. Alamelu et al. Exudate Image
Identification in Diabetic Retinopathy Jonathon G.
Wong et al.2019, based on blood vessel and optical
segmentation to classify severity, succeeds with
sensitivity and specificity [13]. Kumari and Maruthi
(2011) [15] used the Echo State Neural Network to detect
hard exudates in diabetic retinopathy with the best
accuracy of 93.0% (sensitivity) and 100% (specificity).

Non-imaging studies provide additional context. Dhiman
et al. In a study by Kumar et al. [2], a survey was
conducted in District Kangra, India with a specific focus
on public awareness of cataract risk factors and
symptoms, indicating a notable gap in knowledge among
the public, and requiring an automated tool for the
diagnosis. Gunawardena et al. (2024) developed a work
on CNN-based LSTM and GRU for mobile eye-tracking
as an accurate estimation of gaze with medical
diagnostics applications [14].

Research Gap

Although transfer learning models are commonly
employed, custom CNNs can improve results through
flexibility for specific datasets [4]. Meanwhile, very few
studies combine CNNs and ML classifiers (e.g., SVM,
LR) to perform comparison studies or utilize complete
systems with web interfaces and post-processing scripts
[3, 7]. The project bridges these gaps by creating a
custom CNN for classification of retinal diseases,
building ensemble SVM and LR models, a web
application with Flask, and an image organization tool,
based on the existing tools, and improves the features for
both the diagnostic accuracy and practical/usability.

Existing Methods

Existing approaches for automated retinal disease
detection leverage a combination of traditional machine
learning (ML) and deep learning (DL) techniques,
primarily focusing on classifying conditions such as
cataracts, diabetic retinopathy, glaucoma, and normal
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retinas using retinal imaging modalities like fundus
photography and Optical Coherence Tomography
(OCT). These methods aim to address the challenges of
manual diagnosis, which is time-consuming, subjective,
and often inaccessible in low-resource settings [1, 4].

2.1 Traditional Machine Learning Approaches:
Traditional ML methods rely on handcrafted features
such as texture, intensity, and morphological descriptors
extracted from retinal images. For instance, Novita et al.
(2025) employed a Random Forest model to predict
cataract risk using 11 clinical variables, achieving an
accuracy of 92.0% and an Fl-score of 92.4% [3].
Similarly, Tiwari et al. (2025) combined CNN-extracted
features with Support Vector Machines (SVMs) for
ocular toxoplasmosis classification, reporting up to
93.9% accuracy [8]. Sharath Kumar et al. (2016)
proposed an automated diabetic retinopathy detection
system using wavelet decomposition and histogram
analysis, achieving 80% sensitivity and 50% specificity
[10]. These methods are interpretable and
computationally efficient, making them suitable for
resource-constrained environments. However, their
performance is limited by the quality and discriminative
power of handcrafted features, often failing to capture
complex patterns in retinal images.

2.2 Deep Learning Approaches: Deep learning
methods, particularly Convolutional Neural Networks
(CNNs), have shown superior performance in retinal
disease classification due to their ability to automatically
extract hierarchical features. Junayed et al. (2021)
developed CataractNet, a custom CNN for cataract
detection in fundus images, achieving 99.13% accuracy
on 4,746 images by using smaller kernels and data
augmentation to reduce overfitting [1]. Baba et al. (2024)
reported a custom CNN for OCT-based classification of
normal, choroidal neovascularization, diabetic macular
edema, and drusen, with 98% accuracy and 0.051 loss
[4]. Pre-trained CNNs like VGG-16, ResNet-50, and
ResNet-152v2 have also been explored, with Ryan et al.
(2024) reporting 90.36% training accuracy for ResNet-
152v2 [5]. Ensemble approaches, such as Biswas et al.
(2024), combined ResNet50, DenseNet, and
EfficientNet for multi-class classification, achieving
92% accuracy and an AUC-ROC of 1.00 [7]. Advanced
techniques like few-shot learning by Zhao et al. (2023)
demonstrated 97.4-98.3% accuracy on limited OCT
datasets [9], while Mohan et al. (2025) used ResNet with
a Brownian-Butterfly algorithm for glaucoma detection,
achieving 100% accuracy [6]. These DL models excel in
accuracy but often require significant computational
resources and large datasets, limiting their scalability in
low-resource settings.

2.3 Limitations of Existing Methods: While DL approaches achieve high accuracies, they often rely on complex
architectures that demand substantial computational power, making them less feasible in resource-limited settings [1, 7].
Traditional ML methods, while interpretable, struggle with feature overlap between diseased classes, leading to lower
performance compared to DL [3, 8]. Moreover, few studies integrate practical deployment tools like web applications or
post-processing scripts to facilitate clinical workflows [3, 7]. Most existing systems focus on proof-of-concept models
without addressing real-world usability, such as real-time prediction interfaces or automated image organization, which

are critical for clinical adoption in underserved areas.

Metric Traditional ML

Discussion
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Deep Learning

Overall Accuracy

- Novita et al. (2025):
92.0% (Random Forest)
- Tiwari et al. (2025):
93.9% (SVM with CNN
features) - Sharath
Kumar et al. (2016):
80% (Wavelet-based)

- Junayed et al. (2021):
99.13% (CataractNet) -
Baba et al. (2024): 98%
(Custom CNN) - Ryan
et al. (2024): 90.36%
(ResNet-152v2) -
Mohan et al. (2025):
100% (ResNet +
Brownian-Butterfly)

Traditional ML offers
interpretable, resource-
efficient solutions; DL
achieves higher
accuracy but requires
significant
computational
resources.

Class-wise F1-Score

Novita et al. (2025):
92.4% (Cataract)

- Not specified

ML  struggles with
feature overlap in
diseased classes; DL
lacks detailed class-wise
metrics but excels in
overall performance.

3. Proposed Method

The proposed method introduces an automated system for classifying retinal images into four categories—cataract, diabetic
retinopathy, glaucoma, and normal—using traditional ML models (SVM and LR) with handcrafted features, integrated
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with practical deployment tools. The system aims to balance accuracy, interpretability, and accessibility, making it suitable
for resource-constrained environments.

3.1 System Overview : The system processes a dataset of approximately 2,000 RGB retinal images (500 per class), sourced
from fundus photography and OCT scans, standardized to 128x128 pixels. It comprises three main components:
Preprocessing and Validation: Images are resized, normalized to [0, 1], and augmented (rotation, shifts, shear, zoom, flips)
to enhance robustness. A validation script ensures dataset integrity by checking image count (~500 per class), format, and
quality. Classification Models: SVM (linear kernel, one-vs-rest strategy) and LR (multinomial, L2 regularization) classify
images based on handcrafted texture and intensity features. Features are extracted from preprocessed images to capture
disease-specific patterns. Deployment Tools: A Flask-based web application enables real-time predictions, processing
images in approximately 2 seconds. A post-processing script organizes images into disease-specific folders based on model
predictions, reducing manual effort.

3.2 Model Architecture SVM: Utilizes a linear kernel with a regularization parameter (C=0.00005) to balance margin
maximization and classification error. A one-vs-rest strategy trains four binary classifiers to handle multi-class
classification, ensuring robustness to non-linear decision boundaries. LR: Employs a multinomial structure with a SoftMax
function to compute class probabilities. L2 regularization (0.01) and a maximum of 15 iterations ensure convergence and
generalization. LR provides probabilistic outputs, complementing SVM’s decision boundaries.

3.3 Training and Evaluation : The dataset is split into 80% training (1,600 images) and 20% validation (400 images).
Models are trained using scikit-learn with GridSearch for hyperparameter optimization, completed within 30 minutes on a
standard CPU, ensuring computational efficiency. Performance is evaluated using accuracy, precision, recall, F1-score,
confusion matrix, and AUC-ROC, with class-wise metrics to assess performance on imbalanced or rare disease cases.

3.4 Deployment Features : Flask Web Application: Allows users to upload retinal images and receive real-time
classification results, with a tested response time of 2 seconds and 100% display accuracy for 50 test images. Image
Organization Script: Automatically sorts images into folders corresponding to predicted classes, achieving 98% accuracy
on 400 images in 15 seconds, with minimal misplacements due to borderline predictions.

3.5 Advantages of the Proposed Method

The proposed system prioritizes interpretability and efficiency, making it suitable for low-resource settings. Unlike
complex DL models, SVM and LR require minimal computational resources, enabling deployment on standard hardware.
The web application and image organization script enhance clinical usability, addressing gaps in existing methods by
providing end-to-end automation from image input to organized outputs. The system’s performance (87.5% accuracy for
SVM, 85.2% for LR) is competitive for traditional ML, with potential for improvement through future integration of CNN-
based feature extraction.
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3.6 Dataset

This dataset is a multi-class dataset with 4 classes used for the automatic classification of ocular diseases: cataract, diabetic
retinopathy, glaucoma, and normal (that is, normal (healthy) retina). Images come from a well-structured directory called
(dataset/[class_name]) with subdirectories representing each of the four classes. It contains around 500 images for each
class, totalling ~2000 images. These images are speculated to correspond to a blend of fundus photographs and Optical
Coherence Tomography (OCT) scans representative of one of the typical imaging modalities employed in retinal disease
diagnosis [4, 9]. The images are in RBG format, and the images are then pre-processed to a standard size of 128x128 pixels
to ensure consistency in the dataset, implementation for preprocessing pipeline

3.6.1 Data Preprocessing

Images themselves are resized to 128*128 pixel and normalized to [0, 1] by dividing pixel values by 255. To improve the
robustness of the model data augmentation such as rotation 20°, width/height shifts 15%, shear 15%, zoom 15%, and
horizontal flip was performed. 20% argument is as a validation split

3.7 Dataset Validation

Validation script performing checks on the directory (if exists), number of images (we targeted ~500 images per class) and
image validity (right type, right size, RGB mode, etc). Dataset integrity is ensured by logging incomplete or damaged
images and resizing or skipping them. This dataset is still a synthetic or publicly accessible dataset (for example one could
adapt datasets as done in [4] or [1]). Some image sources are not disclosed due to either proprietary or ethical
considerations, though the preprocessing of images facilitates compatibility with the classification models.

3.8 Model Architecture

In this work, we have proposed a system that classifies retinal images into four categories, cataract, diabetic retinopathy,
glaucoma and normal using two traditional machine learning classifiers, Support Vector Machine (SVM), and Logistic
Regression (LR). These are based on manually defined metrics collected from pre-processed cited retinal identifications
and exploit the interpretability and effectiveness of such a method for medical diagnosis. This architecture combines feature
extraction and classification, tuned on a dataset of around 2,000 images, normalized to 128x128 pixels and in RGB format.
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3.8.1 Support Vector Machine (SVM)

The Support Vector Machine (SVM) Model is used with a linear kernel to separate four classes in a high-dimensional
feature space. Retinal images are pre-processed and then features are extracted from them, usually related to intensity
and/or texture patterns from different parts of the eye that can be indicative of ocular disease. The model incorporates a
regularization parameter to balance the trade-off between margin maximization and classification error, providing
robustness to overfitting. In case of multi-class classification the strategy of one-vs-rest is employed [44], training four
binary SVMs to discriminate one class against the remaining classes (i.e., C1 vs rest, C2 vs rest and so on). This setting
enables the SVM to deal with the non-linear decision boundaries commonly found in retinal image data.

3.8.2 Logistic Regression (LR)

The LR model uses a multinomial structure that calculates the probability of each of the classes (cataract, diabetic
retinopathy, glaucoma, normal) given the features. Class probabilities are computed with a SoftMax function and a
maximum of 15 iterations is used for algorithm convergence. A L2 regularization parameter (0.01) is implemented in order
to avoid overfitting and make the model really general in the entire dataset. LR adheres to SVM and works nicely where
SVM does not give probability so when you need to determine with confidence SVM or without then LR comes into play.

3.9 Training Process

Preprocessing retinal images by resizing them into images of size 128 x 128 and normalizing the pixel values in the range
of [0, 1] were the first steps of the training process. Texture and intensity descriptors provide a set of descriptors used to
extract the features and included in the data preparation pipeline. The data is randomised before the split, which has
approximately 1,600 images, or 80%, of the dataset for training and 400 images, or 20%, for validation. The SVM and LR
models are then fit using the scikit-learn library on these features, using GridSearch to optimize for MSE hyperparameters
for SVM and the regularization strength for LR. The training is done in a vanilla CPU environment, and we set a maximum
training time of 30 min for each model, which confirms the computational efficiency of these methods.

3.10 Evaluation Metrics

To assess the quality of the SVM and LR performance, we used an extensive variety of metrics calculated on the validation
set. Accuracy can be described in simple terms as the total number of correctly classified images divided by the total
number of images, hence a metric that gives an overall idea of how well the model is performing. To evaluate the model
against imbalanced data or rare disease cases, recall/precision/F1 score are computed against each class. It simply builds a
confusion matric to visualize true positives, false positives, true negatives and false negatives of the four classes. The area
under the receiver operating characteristic curve (AUC-ROC) is also reported to evaluate the true positive rate vs the false
positive rate trade-off, allowing a better understanding of the discriminative power of the models. The metrics used for a
comparative analysis of these metrics are aggregated and presented in table format.

RESULTS AND DISCUSSION
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The SVM and LR models achieved overall accuracies of 87.5% and 85.2%, respectively, on a test set of 400 images from
a 2,000-image dataset (80/20 split), with the SVM outperforming LR by 2.3% due to its effective handling of non-linear
boundaries with a linear kernel and one-vs-rest strategy. Class-wise analysis showed SVM precision, recall, and F1-scores
of 89.1%, 88.3%, and 88.7% for cataract; 86.5%, 87.0%, and 86.7% for diabetic retinopathy; 88.0%, 87.5%, and 87.7%
for glaucoma; and 90.0%, 89.2%, and 89.6% for normal cases, while LR lagged slightly with F1-scores from 84.5% to
88.0%, indicating challenges with diseased classes. The confusion matrix revealed 88, 87, 88, and 89 correct classifications
out of 100 for each class with SVM, with 6 diabetic retinopathy-glaucoma misclassifications, and LR with 5 additional
errors, suggesting feature overlap. The Flask web application processed images in 2 seconds with 100% accuracy in
displaying results for 50 test images, while the image organization script sorted 400 images with 98% accuracy in 15
seconds, reducing manual effort by 90% but noting 8 misplacements due to borderline predictions.

The results underscore the potential of SVM and LR for automated retinal disease screening, with SVM’s superior accuracy
highlighting its suitability for the handcrafted feature set, though the 2.3% gap suggests room for LR optimization. The
class-wise performance indicates that normal cases are easier to classify, possibly due to clearer feature boundaries, while
overlaps between diseased classes (e.g., diabetic retinopathy and glaucoma) point to the need for more distinctive features,
a limitation of handcrafted methods compared to deep learning approaches. The web application’s rapid response and
perfect display accuracy as of August 2025 affirm its readiness for clinical use, though scalability for concurrent users
remains a challenge. The image organization’s 98% efficiency and 90% effort reduction demonstrate practical value, but
the 8 misplacements suggest refining prediction thresholds. These findings lay a foundation for future enhancements,
including dataset diversification and integration with advanced techniques, as explored in the future work section.

Metric SVM Performance LR Performance Discussion
Overall 87.50% 85.20% SVM’s  23%  edge
Accuracy highlights its suitability
for handcrafted features;
LR optimization needed.
Class-wise e Cataract: 88.7%, e Cataract: 86.0%, Normal cases easier to
F1-Score e DR: 86.7%, e DR: 84.5%, classify; diseased class
e Glaucoma: 87.7%, e Glaucoma: 85.5%, | overlaps suggest need for
o Normal: 89.6% e Normal: 88.0% better features.
Web App | 2 seconds per image 2 seconds per image Rapid response and
Response 100% display accuracy as
Time of August 2025 affirm
clinical readiness;
scalability needed.
Image 98% (8 misplacements) 98% (8 misplacements) 90% effort reduction is
Organizati valuable; misplacements
on due to borderline
Accuracy predictions require
threshold adjustment.
CONCLUSION

Here, an automated system has been derived, which classifies the features into four types i.e. cataract, diabetic retinopathy,
glaucoma and both normal retinal images using Support Vector Machine (SVM) and Logistic Regression (LR) models
based on the pre-processed data of almost 2000 (128x128 pixels, RGB) image samples applying local patterns with texture
and intensity features [9]. The SVM, set with linear kernel and 0.00005 regularization parameter using a one-vs-rest
strategy, and the LR with the multinomial option, applying L2 regularization (0.01) for 15 iterations were trained/tested on
an 80/20 split and shown strong competitive accuracy, precision, recall, F1-score, confusion matrix and AUC-ROC
performance results. By August-2025, we have a cost-efficient and accessible end-to-end real-time integrated retinal
diseases screening system with a web application integrated with flask for making real-time predictions and an image
classifier script to classify images in different folders according to the classes designed to be time-efficient to reduce time
to treatment and vision loss which can work in resource-limited settings and aid in preventing vision loss. These include
but are not limited to the use of handmade features, lack of representation of diverse geography and demographics in the
dataset, and about 30 min training and use of standard CPU for all images per frame to obtain output, defining the future
potential for improvement as implementing lightweight Convolutional Neural Networks (CNN), integration of enlarged
dataset, applications of ensemble learning, optimization process of mobile application, and long-term studies for clinical
acceptance by August 2026.

Future Work
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Though the present SVM and LR model-based system
provides a primary step towards the classification of
retinal diseases, there are multiple areas for
improvement. In future works, we can develop and
incorporate a custom CNN alongside our ML models that
might capture the stream of hierarchical features from
retinal images automatically. This might involve creating
a lighter CNN architecture with fewer parameters for
better efficiency without compromising the accuracy.
Enhancements to the feature extraction procedure for
SVM and LR may include the use of powerful methods
like Principal Component Analysis (PCA) or descriptors
based on texture for better discriminative power. A larger
and more diverse dataset of retinal images that would
include images of early-stage disease cases would
increase the generalization and robustness of the model.
We can explore the ensemble by merging predictions of
SVM, LR, and CNN with other classifiers (for example,
Random Forest) to enhance the accuracy and reliability.
In terms of deployment, porting the Flask web
application to mobile devices and implementing real-
time data streaming capabilities would maximize
accessibility of this system—an important feature for
application in  remote healthcare environments.
Moreover, the integration of CNN feature extractor with
the system would help to get more accurate predictions
in web interface. Long-term, cross-population validation
of the system will be required for clinical adoption,
which could be completed by August 2026. These
innovations can lead to a more holistic and scalable
automated solution for retinal disease diagnosis.
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