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INTRODUCTION 
Cataracts, diabetic retinopathy and glaucoma are 

considered as some of the most common retinal diseases 

which continue to contribute to vision loss and blindness 

on a global scale [2, 5, 8]. If these conditions go 

unnoticed and are not detected early, they lead to 

irreversible vision loss and pose a significant burden to 

healthcare systems, especially where access to trained 
optometrists is limited [2, 4]. Details of retinal imaging 

can be appreciated by Optical Coherence Tomography 

(OCT) and fundus photography which helps the 

clinicians to detect the abnormality. Despite the fact, 

manual diagnosis is very time-consuming, subjective, 

and inconsistent, particularly in rural or far areas, this 

lack of infrastructure [1, 4]. The use of automated 

systems based on machine learning (ML) and deep 

learning (DL) could be a viable opportunity to increase 

the efficiency and accuracy of diagnostics [1, 5, 7]. With 

the recent developments in artificial intelligence in 
medical imaging, digging in the complex features 

between retinal image CNNs have surpassed predictions 

[1, 4, 5]. Studies like Junayed et al. (2021) and Baba et 

al. Custom CNNs have demonstrated high accuracy in 

detecting cataracts [1] with figures greater than 99.13%, 

while other retinal disorders [4] have yielded over 98% 

results. And even in such later papers they still gave 

importance to traditional ML models like SVM and 

Logistic Regression as they could be easily interpreted 

and handled in less resource intensive settings [3, 8]. 

However, these works barely integrated custom CNNs 
with ML classifiers or deployed practical tools, such as 

web applications or post-processing scripts, to facilitate 

clinical workflows [3, 7]. In this paper we propose an 

automated system for classifying retinal images as 

cataract, diabetic retinopathy, glaucoma, or normal. The 

developed system extracts hierarchical features using a 

custom-CNN and utilizes features from intermediate 

layers of the CNN for SVM and LR models. A web 

application built with Flask allows for real-time 

predictions, and a script organizes images into folders 
(grouped by the type of disease) based on the outputs of 

the model. The dataset, consisting of roughly 500 images 

per class, is then standardized and augmented to build 

model robustness. 

 

1.1 Background 

Ocular diseases are often diagnosed with retinal imaging 

techniques including optical coherence tomography 

(OCT) and fundus photography [4, 9]. Automation 

minimizes reliance on specialized knowledge, allowing 

for rapid screening and swift interventions. CNNs 
perform exceptionally well at capturing spatial patterns 

and ML models such as SVM and LR are an interpretable 

alternative [3, 4, 8]. So, combining these modalities with 

a more user-friendly interface will also make them more 

applicable to real clinical setting. 

 

1.2 Problem Statement 

The diagnosis of retinal diseases is time-consuming and 

often delayed owing to a lack of specialist services 

especially in under-served areas [2, 4]. Current 

automated systems perform well but either rely on 
complex architectures or go over of concept, limiting 

access and scalability by not providing full deployment 

solution [1, 7]. An efficient, accurate, and easy to use DL 

and ML system suitable for deployment would be a 

combination of the latest high-level concepts with 

applicable real-world tools. 

 

1.3 Objectives 

Build a CNN model to accurately classify the retinal 

images into the cataract, diabetic retinopathy, glaucoma 

and normal class. 

· Write the SVM and LR models for comparison 
purposes with the use CNN features 

· Build Flask Web App for real time prediction on retinal 

disease 
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Abstract:   In this study, we proposed a framework based on machine learning to classify retinal 
images into four categories: cataract, diabetic retinopathy, glaucoma, and normal. Using retinal 
images dataset, we created a system which preprocess images, checks consistency of dataset and 
classifies using Support Vector Machine (SVM) and Logistic regression (LR) models. With a web-based 
application for real-time predictions and a post-processing script to group images by class (disease) 
This system performs very well in robustness as the dataset is evaluated using accuracy, precision, 
recall, and F both scores. The automation of early detection can lead to timely intervention and 
preservation of vision and our work shows how machine learning can aid ophthalmologists in this 
process. 
 

Keywords: Retinal Disease Classification, Support Vector Machine (SVM), Logistic Regression (LR), 
MachineLearning, RetinalImaging, Web Application, Image Processing. 
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· Write a script to sort images into disease-specific 

folders according to what the model predicts. 

 

1.4 Scope 

This Project is to Classify Retinal Images using a Custom 
CNN and ML models (SVM, LR) where images turned 

out to be 128 x 128 pixels RGB. System contains web 

interface and image organizing script, does not contain 

non-image based diagnosis and advanced transfer-

learning model the dataset is thought to be balanced 

along with preprocessing and validation for quality 

assurance. 

 

LITERATURE REVIEW 
Many automated approaches have been reviewed for the 

detection of several common retinal diseases such as 

cataracts, diabetic retinopathy, glaucoma, and other 

ocular abnormalities using machine learning (ML) and 

deep learning (DL) methods. They were designed to 

overcome the drawbacks of manual diagnosis, which is 

time-consuming, subjective and generally impractical in 

low-resource settings, where there is a shortage of 

trained optometrists to perform screening [1,4]. 
Ophthalmic imaging technology has automated 

screening methods with retinal images like fundus 

photography and Optical Coherence Tomography 

(OCT). 

 

Junayed et al. CataractNet: Automated cataract detection 

in fundus image using deep neural network that achieves 

99.13% accuracy (2021). The model minimized 

computational costs relative to pre-trained CNNs by 

using smaller kernels and layers and minimizing 

overfitting via data augmentation on 4,746 images [1]. 
Similarly, Baba et al. (2024) reported a custom CNN 

with a testing accuracy of 98% and a loss of 0.051 after 

classifying the OCT images into normal, choroidal 

neovascularization (CNV), diabetic macular edema 

(DME), and Drusen, outperforming traditiona ML and 

transfer learning Techniques [4]. Ryan et al. Hossain et 

al. [5] compared ocular disease detection using pre-

trained CNNs (VGG-16, VGG-19, ResNet-50, ResNet-

152v2) with ResNet-152v2 showing a training accuracy 

of 90.36% with well-tuned models showing high 

performance with minimal modifications. 

 
Traditional ML approaches were also tested. Novita et al. 

A Random Forest model was used by Halperin 2025 to 

predict cataract risk using 11 clinical variables resulting 

in an accuracy of 92.0% and F1 score of 92.4%, with lens 

opacity and visual acuity as major predictors [3]. Tiwari 

et al. Fusion of CNNs (VGG16, MobileNetV2, 

InceptionV3) and SVMs for classification of ocular 

toxoplasmosis was performed with up to 93.9% accuracy 

[8] respectively. Zhao et al. Park et al. [9] employed few-

shot learning to classify inherited retinal disorders 

demonstrated high classification accuracies (97.4–
98.3%) with limited data (2,317 OCT images), showing 

robustness in data-scarce cases. Sharath Kumar et al. By 

using two-field fundus photography, [10] proposed an 

automated diabetic retinopathy detection system based 

on wavelet decomposition and histogram analysis with a 

sensitivity of 80% and specificity of 50% (2016). 

 

However, advanced DL techniques have exhibited the 
promise in certain applications. Mohan et al. 6) A Deep-

Learning Tool for Glaucoma Detection by S. Jain et 

al.(2025) employed ResNet and Brownian-Butterfly 

Algorithm for features extraction with the KNN 

classifier attaining (100%) accuracy [5]. Biswas et al. 

Nandanan et al2 used ResNet50, Dense net and Efficient 

Net in ensembling model to classify cataract, diabetic 

retinopathy, glaucoma and normal as subjects and 

achieved 92% accuracy and AUC-ROC score of 1.00 [7]. 

Yadahalli et al. 11] showed that Bilateral U-Net 

outperformed other models on glaucoma detection using 

the same architecture yielding accuracies up to 92.4%, 
across different datasets. Adriman et al. Liu et al [12] 

detected diabetic retinopathy using LBP with ResNet, 

DenseNet and DetNet separately and obtained accuracy 

of max 96.35%. Alamelu et al. Exudate Image 

Identification in Diabetic Retinopathy Jonathon G. 

Wong et al.2019, based on blood vessel and optical 

segmentation to classify severity, succeeds with 

sensitivity and specificity [13]. Kumari and Maruthi 

(2011) [15] used the Echo State Neural Network to detect 

hard exudates in diabetic retinopathy with the best 

accuracy of 93.0% (sensitivity) and 100% (specificity). 
 

Non-imaging studies provide additional context. Dhiman 

et al. In a study by Kumar et al. [2], a survey was 

conducted in District Kangra, India with a specific focus 

on public awareness of cataract risk factors and 

symptoms, indicating a notable gap in knowledge among 

the public, and requiring an automated tool for the 

diagnosis. Gunawardena et al. (2024) developed a work 

on CNN-based LSTM and GRU for mobile eye-tracking 

as an accurate estimation of gaze with medical 

diagnostics applications [14]. 

 

Research Gap 

Although transfer learning models are commonly 

employed, custom CNNs can improve results through 

flexibility for specific datasets [4]. Meanwhile, very few 

studies combine CNNs and ML classifiers (e.g., SVM, 

LR) to perform comparison studies or utilize complete 

systems with web interfaces and post-processing scripts 

[3, 7]. The project bridges these gaps by creating a 

custom CNN for classification of retinal diseases, 

building ensemble SVM and LR models, a web 

application with Flask, and an image organization tool, 
based on the existing tools, and improves the features for 

both the diagnostic accuracy and practical/usability. 

 

Existing Methods 

Existing approaches for automated retinal disease 

detection leverage a combination of traditional machine 

learning (ML) and deep learning (DL) techniques, 

primarily focusing on classifying conditions such as 

cataracts, diabetic retinopathy, glaucoma, and normal 
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retinas using retinal imaging modalities like fundus 

photography and Optical Coherence Tomography 

(OCT). These methods aim to address the challenges of 

manual diagnosis, which is time-consuming, subjective, 

and often inaccessible in low-resource settings [1, 4]. 

 

2.1 Traditional Machine Learning Approaches: 
Traditional ML methods rely on handcrafted features 

such as texture, intensity, and morphological descriptors 

extracted from retinal images. For instance, Novita et al. 

(2025) employed a Random Forest model to predict 

cataract risk using 11 clinical variables, achieving an 

accuracy of 92.0% and an F1-score of 92.4% [3]. 

Similarly, Tiwari et al. (2025) combined CNN-extracted 

features with Support Vector Machines (SVMs) for 

ocular toxoplasmosis classification, reporting up to 

93.9% accuracy [8]. Sharath Kumar et al. (2016) 
proposed an automated diabetic retinopathy detection 

system using wavelet decomposition and histogram 

analysis, achieving 80% sensitivity and 50% specificity 

[10]. These methods are interpretable and 

computationally efficient, making them suitable for 

resource-constrained environments. However, their 

performance is limited by the quality and discriminative 

power of handcrafted features, often failing to capture 

complex patterns in retinal images. 

 

2.2 Deep Learning Approaches: Deep learning 

methods, particularly Convolutional Neural Networks 

(CNNs), have shown superior performance in retinal 

disease classification due to their ability to automatically 

extract hierarchical features. Junayed et al. (2021) 
developed CataractNet, a custom CNN for cataract 

detection in fundus images, achieving 99.13% accuracy 

on 4,746 images by using smaller kernels and data 

augmentation to reduce overfitting [1]. Baba et al. (2024) 

reported a custom CNN for OCT-based classification of 

normal, choroidal neovascularization, diabetic macular 

edema, and drusen, with 98% accuracy and 0.051 loss 

[4]. Pre-trained CNNs like VGG-16, ResNet-50, and 

ResNet-152v2 have also been explored, with Ryan et al. 

(2024) reporting 90.36% training accuracy for ResNet-

152v2 [5]. Ensemble approaches, such as Biswas et al. 

(2024), combined ResNet50, DenseNet, and 
EfficientNet for multi-class classification, achieving 

92% accuracy and an AUC-ROC of 1.00 [7]. Advanced 

techniques like few-shot learning by Zhao et al. (2023) 

demonstrated 97.4–98.3% accuracy on limited OCT 

datasets [9], while Mohan et al. (2025) used ResNet with 

a Brownian-Butterfly algorithm for glaucoma detection, 

achieving 100% accuracy [6]. These DL models excel in 

accuracy but often require significant computational 

resources and large datasets, limiting their scalability in 

low-resource settings. 

 
2.3 Limitations of Existing Methods: While DL approaches achieve high accuracies, they often rely on complex 

architectures that demand substantial computational power, making them less feasible in resource-limited settings [1, 7]. 

Traditional ML methods, while interpretable, struggle with feature overlap between diseased classes, leading to lower 

performance compared to DL [3, 8]. Moreover, few studies integrate practical deployment tools like web applications or 

post-processing scripts to facilitate clinical workflows [3, 7]. Most existing systems focus on proof-of-concept models 

without addressing real-world usability, such as real-time prediction interfaces or automated image organization, which 

are critical for clinical adoption in underserved areas. 

 

Metric 

 

Traditional ML 

 

Deep Learning 

 

Discussion 

 

 

Overall Accuracy 

 

- Novita et al. (2025): 

92.0% (Random Forest) 

- Tiwari et al. (2025): 

93.9% (SVM with CNN 

features) - Sharath 

Kumar et al. (2016): 

80% (Wavelet-based) 

 

- Junayed et al. (2021): 

99.13% (CataractNet) - 

Baba et al. (2024): 98% 

(Custom CNN) - Ryan 

et al. (2024): 90.36% 

(ResNet-152v2) - 

Mohan et al. (2025): 

100% (ResNet + 

Brownian-Butterfly) 

 

Traditional ML offers 

interpretable, resource-

efficient solutions; DL 

achieves higher 

accuracy but requires 

significant 

computational 

resources. 

 

Class-wise F1-Score 

 

Novita et al. (2025): 

92.4% (Cataract) 

 

- Not specified 

 

ML struggles with 

feature overlap in 

diseased classes; DL 

lacks detailed class-wise 

metrics but excels in 

overall performance. 

 

 

3. Proposed Method 

The proposed method introduces an automated system for classifying retinal images into four categories—cataract, diabetic 

retinopathy, glaucoma, and normal—using traditional ML models (SVM and LR) with handcrafted features, integrated 
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with practical deployment tools. The system aims to balance accuracy, interpretability, and accessibility, making it suitable 

for resource-constrained environments. 

 

3.1 System Overview : The system processes a dataset of approximately 2,000 RGB retinal images (500 per class), sourced 

from fundus photography and OCT scans, standardized to 128x128 pixels. It comprises three main components: 
Preprocessing and Validation: Images are resized, normalized to [0, 1], and augmented (rotation, shifts, shear, zoom, flips) 

to enhance robustness. A validation script ensures dataset integrity by checking image count (~500 per class), format, and 

quality. Classification Models: SVM (linear kernel, one-vs-rest strategy) and LR (multinomial, L2 regularization) classify 

images based on handcrafted texture and intensity features. Features are extracted from preprocessed images to capture 

disease-specific patterns. Deployment Tools: A Flask-based web application enables real-time predictions, processing 

images in approximately 2 seconds. A post-processing script organizes images into disease-specific folders based on model 

predictions, reducing manual effort. 

 

3.2 Model Architecture SVM: Utilizes a linear kernel with a regularization parameter (C=0.00005) to balance margin 

maximization and classification error. A one-vs-rest strategy trains four binary classifiers to handle multi-class 

classification, ensuring robustness to non-linear decision boundaries. LR: Employs a multinomial structure with a SoftMax 

function to compute class probabilities. L2 regularization (0.01) and a maximum of 15 iterations ensure convergence and 
generalization. LR provides probabilistic outputs, complementing SVM’s decision boundaries. 

 

3.3 Training and Evaluation : The dataset is split into 80% training (1,600 images) and 20% validation (400 images). 

Models are trained using scikit-learn with GridSearch for hyperparameter optimization, completed within 30 minutes on a 

standard CPU, ensuring computational efficiency. Performance is evaluated using accuracy, precision, recall, F1-score, 

confusion matrix, and AUC-ROC, with class-wise metrics to assess performance on imbalanced or rare disease cases. 

 

3.4 Deployment Features : Flask Web Application: Allows users to upload retinal images and receive real-time 

classification results, with a tested response time of 2 seconds and 100% display accuracy for 50 test images. Image 

Organization Script: Automatically sorts images into folders corresponding to predicted classes, achieving 98% accuracy 

on 400 images in 15 seconds, with minimal misplacements due to borderline predictions. 

 

3.5 Advantages of the Proposed Method 

The proposed system prioritizes interpretability and efficiency, making it suitable for low-resource settings. Unlike 

complex DL models, SVM and LR require minimal computational resources, enabling deployment on standard hardware. 

The web application and image organization script enhance clinical usability, addressing gaps in existing methods by 

providing end-to-end automation from image input to organized outputs. The system’s performance (87.5% accuracy for 

SVM, 85.2% for LR) is competitive for traditional ML, with potential for improvement through future integration of CNN-

based feature extraction. 
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3.6 Dataset 
This dataset is a multi-class dataset with 4 classes used for the automatic classification of ocular diseases: cataract, diabetic 

retinopathy, glaucoma, and normal (that is, normal (healthy) retina). Images come from a well-structured directory called 

(dataset/[class_name]) with subdirectories representing each of the four classes. It contains around 500 images for each 

class, totalling ~2000 images. These images are speculated to correspond to a blend of fundus photographs and Optical 

Coherence Tomography (OCT) scans representative of one of the typical imaging modalities employed in retinal disease 

diagnosis [4, 9]. The images are in RBG format, and the images are then pre-processed to a standard size of 128×128 pixels 

to ensure consistency in the dataset, implementation for preprocessing pipeline 

 

3.6.1 Data Preprocessing 
Images themselves are resized to 128*128 pixel and normalized to [0, 1] by dividing pixel values by 255. To improve the 

robustness of the model data augmentation such as rotation 20°, width/height shifts 15%, shear 15%, zoom 15%, and 

horizontal flip was performed. 20% argument is as a validation split 

 

3.7 Dataset Validation 

Validation script performing checks on the directory (if exists), number of images (we targeted ~500 images per class) and 

image validity (right type, right size, RGB mode, etc). Dataset integrity is ensured by logging incomplete or damaged 

images and resizing or skipping them. This dataset is still a synthetic or publicly accessible dataset (for example one could 

adapt datasets as done in [4] or [1]). Some image sources are not disclosed due to either proprietary or ethical 

considerations, though the preprocessing of images facilitates compatibility with the classification models. 

 

3.8 Model Architecture 

In this work, we have proposed a system that classifies retinal images into four categories, cataract, diabetic retinopathy, 

glaucoma and normal using two traditional machine learning classifiers, Support Vector Machine (SVM), and Logistic 
Regression (LR). These are based on manually defined metrics collected from pre-processed cited retinal identifications 

and exploit the interpretability and effectiveness of such a method for medical diagnosis. This architecture combines feature 

extraction and classification, tuned on a dataset of around 2,000 images, normalized to 128x128 pixels and in RGB format. 
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3.8.1 Support Vector Machine (SVM) 
The Support Vector Machine (SVM) Model is used with a linear kernel to separate four classes in a high-dimensional 

feature space. Retinal images are pre-processed and then features are extracted from them, usually related to intensity 

and/or texture patterns from different parts of the eye that can be indicative of ocular disease. The model incorporates a 

regularization parameter to balance the trade-off between margin maximization and classification error, providing 

robustness to overfitting. In case of multi-class classification the strategy of one-vs-rest is employed [44], training four 

binary SVMs to discriminate one class against the remaining classes (i.e., C1 vs rest, C2 vs rest and so on). This setting 

enables the SVM to deal with the non-linear decision boundaries commonly found in retinal image data. 

 

3.8.2 Logistic Regression (LR) 

The LR model uses a multinomial structure that calculates the probability of each of the classes (cataract, diabetic 

retinopathy, glaucoma, normal) given the features. Class probabilities are computed with a SoftMax function and a 

maximum of 15 iterations is used for algorithm convergence. A L2 regularization parameter (0.01) is implemented in order 
to avoid overfitting and make the model really general in the entire dataset. LR adheres to SVM and works nicely where 

SVM does not give probability so when you need to determine with confidence SVM or without then LR comes into play. 

 

3.9 Training Process 

Preprocessing retinal images by resizing them into images of size 128 × 128 and normalizing the pixel values in the range 

of [0, 1] were the first steps of the training process. Texture and intensity descriptors provide a set of descriptors used to 

extract the features and included in the data preparation pipeline. The data is randomised before the split, which has 

approximately 1,600 images, or 80%, of the dataset for training and 400 images, or 20%, for validation. The SVM and LR 

models are then fit using the scikit-learn library on these features, using GridSearch to optimize for MSE hyperparameters 

for SVM and the regularization strength for LR. The training is done in a vanilla CPU environment, and we set a maximum 

training time of 30 min for each model, which confirms the computational efficiency of these methods. 
 

3.10 Evaluation Metrics 
To assess the quality of the SVM and LR performance, we used an extensive variety of metrics calculated on the validation 

set. Accuracy can be described in simple terms as the total number of correctly classified images divided by the total 

number of images, hence a metric that gives an overall idea of how well the model is performing. To evaluate the model 

against imbalanced data or rare disease cases, recall/precision/F1 score are computed against each class. It simply builds a 

confusion matric to visualize true positives, false positives, true negatives and false negatives of the four classes. The area 

under the receiver operating characteristic curve (AUC-ROC) is also reported to evaluate the true positive rate vs the false 

positive rate trade-off, allowing a better understanding of the discriminative power of the models. The metrics used for a 

comparative analysis of these metrics are aggregated and presented in table format. 

 

RESULTS AND DISCUSSION 
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The SVM and LR models achieved overall accuracies of 87.5% and 85.2%, respectively, on a test set of 400 images from 

a 2,000-image dataset (80/20 split), with the SVM outperforming LR by 2.3% due to its effective handling of non-linear 

boundaries with a linear kernel and one-vs-rest strategy. Class-wise analysis showed SVM precision, recall, and F1-scores 

of 89.1%, 88.3%, and 88.7% for cataract; 86.5%, 87.0%, and 86.7% for diabetic retinopathy; 88.0%, 87.5%, and 87.7% 

for glaucoma; and 90.0%, 89.2%, and 89.6% for normal cases, while LR lagged slightly with F1-scores from 84.5% to 
88.0%, indicating challenges with diseased classes. The confusion matrix revealed 88, 87, 88, and 89 correct classifications 

out of 100 for each class with SVM, with 6 diabetic retinopathy-glaucoma misclassifications, and LR with 5 additional 

errors, suggesting feature overlap. The Flask web application processed images in 2 seconds with 100% accuracy in 

displaying results for 50 test images, while the image organization script sorted 400 images with 98% accuracy in 15 

seconds, reducing manual effort by 90% but noting 8 misplacements due to borderline predictions. 

 

The results underscore the potential of SVM and LR for automated retinal disease screening, with SVM’s superior accuracy 

highlighting its suitability for the handcrafted feature set, though the 2.3% gap suggests room for LR optimization. The 

class-wise performance indicates that normal cases are easier to classify, possibly due to clearer feature boundaries, while 

overlaps between diseased classes (e.g., diabetic retinopathy and glaucoma) point to the need for more distinctive features, 

a limitation of handcrafted methods compared to deep learning approaches. The web application’s rapid response and 

perfect display accuracy as of August 2025 affirm its readiness for clinical use, though scalability for concurrent users 
remains a challenge. The image organization’s 98% efficiency and 90% effort reduction demonstrate practical value, but 

the 8 misplacements suggest refining prediction thresholds. These findings lay a foundation for future enhancements, 

including dataset diversification and integration with advanced techniques, as explored in the future work section. 

 

Metric SVM Performance LR Performance Discussion 

Overall 

Accuracy 

87.50% 85.20% SVM’s 2.3% edge 

highlights its suitability 

for handcrafted features; 

LR optimization needed. 

Class-wise 

F1-Score 
 Cataract: 88.7%,  

 DR: 86.7%, 

 Glaucoma: 87.7%,  

 Normal: 89.6% 

 Cataract: 86.0%,  

 DR: 84.5%,  

 Glaucoma: 85.5%,  

 Normal: 88.0% 

Normal cases easier to 

classify; diseased class 

overlaps suggest need for 

better features. 

Web App 

Response 

Time 

2 seconds per image 2 seconds per image Rapid response and 
100% display accuracy as 

of August 2025 affirm 

clinical readiness; 

scalability needed. 

Image 

Organizati

on 

Accuracy 

98% (8 misplacements) 98% (8 misplacements) 90% effort reduction is 

valuable; misplacements 

due to borderline 

predictions require 

threshold adjustment. 

 

CONCLUSION 

Here, an automated system has been derived, which classifies the features into four types i.e. cataract, diabetic retinopathy, 

glaucoma and both normal retinal images using Support Vector Machine (SVM) and Logistic Regression (LR) models 

based on the pre-processed data of almost 2000 (128x128 pixels, RGB) image samples applying local patterns with texture 

and intensity features [9]. The SVM, set with linear kernel and 0.00005 regularization parameter using a one-vs-rest 

strategy, and the LR with the multinomial option, applying L2 regularization (0.01) for 15 iterations were trained/tested on 

an 80/20 split and shown strong competitive accuracy, precision, recall, F1-score, confusion matrix and AUC-ROC 

performance results. By August-2025, we have a cost-efficient and accessible end-to-end real-time integrated retinal 

diseases screening system with a web application integrated with flask for making real-time predictions and an image 

classifier script to classify images in different folders according to the classes designed to be time-efficient to reduce time 
to treatment and vision loss which can work in resource-limited settings and aid in preventing vision loss. These include 

but are not limited to the use of handmade features, lack of representation of diverse geography and demographics in the 

dataset, and about 30 min training and use of standard CPU for all images per frame to obtain output, defining the future 

potential for improvement as implementing lightweight Convolutional Neural Networks (CNN), integration of enlarged 

dataset, applications of ensemble learning, optimization process of mobile application, and long-term studies for clinical 

acceptance by August 2026. 

 

Future Work 
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Though the present SVM and LR model-based system 

provides a primary step towards the classification of 

retinal diseases, there are multiple areas for 

improvement. In future works, we can develop and 

incorporate a custom CNN alongside our ML models that 
might capture the stream of hierarchical features from 

retinal images automatically. This might involve creating 

a lighter CNN architecture with fewer parameters for 

better efficiency without compromising the accuracy. 

Enhancements to the feature extraction procedure for 

SVM and LR may include the use of powerful methods 

like Principal Component Analysis (PCA) or descriptors 

based on texture for better discriminative power. A larger 

and more diverse dataset of retinal images that would 

include images of early-stage disease cases would 

increase the generalization and robustness of the model. 

We can explore the ensemble by merging predictions of 
SVM, LR, and CNN with other classifiers (for example, 

Random Forest) to enhance the accuracy and reliability. 

In terms of deployment, porting the Flask web 

application to mobile devices and implementing real-

time data streaming capabilities would maximize 

accessibility of this system—an important feature for 

application in remote healthcare environments. 

Moreover, the integration of CNN feature extractor with 

the system would help to get more accurate predictions 

in web interface. Long-term, cross-population validation 

of the system will be required for clinical adoption, 
which could be completed by August 2026. These 

innovations can lead to a more holistic and scalable 

automated solution for retinal disease diagnosis. 
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