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effects. Moreover, fiber-rich diets increase short-chain fatty acid production, which can modulate
hepatic drug-metabolizing enzymes, while specific probiotic strains attenuate antibiotic-induced
dysbiosis and preserve drug bioavailability. Nutritional interventions also hold promise in reducing
microbiome-driven drug toxicity, such as irinotecan-induced diarrhea or digoxin inactivation. This
review synthesizes current understanding of microbiome-drug interactions, highlighting key microbial
pathways (e.g., B-glucuronidase activity, bile acid metabolism, reductive transformations) that
influence drug fate. We further examine clinical evidence linking dietary modulation of the microbiome
to improved therapeutic outcomes in oncology, cardiology, metabolic disorders, and neuropsychiatric
disease. Finally, we discuss challenges in translating microbiome-nutrition insights into personalized
medicine, including interindividual variability, temporal instability of the microbiome, and the need
for integrated multi-omics approaches. By elucidating the nexus between diet, microbiota, and
pharmacology, this review underscores the potential of nutritional interventions as adjuvants to
precision pharmacotherapy.
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INTRODUCTION chemical activity of the microbiota (Jia et al., 2008). Far

. . . . beyond their classical parts in nutrient assimilation and
The Microbiome as a Pharmacological Determinant y P

Theh trointestinal tract harb . q immune maturation, these microbes participate in the
€nhuman gastromntestinal tract harbors an Immense an bio-transformation of xenabiotics, including therapeutic

gynta”?'c mlgroplal eC(t)rs],yfterrlllcotr_nprlmng ar(;:haea:[flkj)ngl, medicines (Koppel et al., 2017; Pant et al., 2023).
acteria, and viruses that cofiectively encode metabolic Microbial enzymes can directly metabolize orally

capacities e>.<ceeding those of the host genome (C_ullin_ et administered compounds before they are absorbed (pre-
al, 2021,.H|II_man _et al., 2017). Once_regar_ded primarily systemic metabolism) or can indirectly influence drug
asa pa'sswe'lnhabltant of .the gastromtest!nal-tract, the pharmacokinetics by altering bile acid pools, gut barrier
mlcm},),lome 1S now reCOng?d asa dynamlc. Metabolic integrity, and host metabolic signaling pathways (Pereira
Organ” that interfaces with host physiology and De Sousa & Bernkop-Schniirch, 2014). Consequently,
exogenous compounds, including beneficial agents the gut microbiome has emerged as a critical yet

(Xiao et al,, 2020). Advances in meta-genomics, meta- underappreciated determinant of drug efficacy and
bolomics, and systems pharmacology have revealed that toxicity (S. Wang et al., 2024).

gut microbes can pro-foundly influence the absorption,
distribution, metabolism, and excretion of drugs, thereby
shaping their efficacy, toxicity, and interindividual
variability in clinical response (Tan et al., 2024). This
paradigm shift redefines pharmacology by expanding the
concept of drug disposition beyond host genetics and
organ function to include the collective genome and bio-

The cardiac glycoside digoxin is in-activated by
Eggerthella lenta via a cardiac glycoside reductase,
leading to reduced therapeutic effect in colonized
persons (Haiser et al., 2014). Likewise, the anti-
neoplastic agent irinotecan undergoes microbial f-
glucuronidase mediated reactivation in the colon,
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producing severe gastrointestinal toxicity (Mahdy et al.,
2023). Anti-biotics themselves can trigger a vicious
cycle by perturbing the microbiome and thereby altering
the pharma-cokinetics of co-administered medications,
such as oral contraceptives or anti-coagulants (Torrent
Rodriguez et al., 2024). These discoveries highlight the
necessity of considering host microbe co-metabolism in
modern pharmacology. At the molecular interface, the
microbiome modulates pharmacokinetics through a
repertoire of enzymatic reactions that rival hepatic
metabolism. Microbial enzymes such as azoreductases,
B-glucuronidases, nitroreductases, and sulfatases can
activate prodrugs, inactivate active compounds, or
generate toxic metabolites (Pant et al., 2023). The
bacterial reactivation of the chemotherapeutic irinotecan
via B-glucuronidase, the reductive activation of the anti-
inflammatory drug sulfasalazine, and the metabolism of
digoxin by E. lenta to an inactive dihydro metabolite
exemplify how microbial enzymes can activate prodrugs,
inactivate active compounds, or generate toxic
metabolites (Curro, 2018; Haiser et al., 2014). In addition
to straight bio-transformation, gut microbes influence
host drug metabolizing enzymes and transporters
through the production of signaling molecules like short-
chain fatty acids (SCFAs), bile acid derivatives, and
tryptophan catabolites, which can modulate nuclear
receptors (e.g., pregnane X receptor (PXR), Farnesoid X
Receptor (FXR), and aryl hydrocarbon receptor (AhR))
and alter hepatic cytochrome P450 expression (Liu et al.,
2023; J. Wang & Zhou, 2025).

Beyond metabolism, the microbiome shapes
pharmacodynamics by interacting with drug targets and
host immune responses (Burke & Li, 2025). Microbial
metabolites such as SCFAs, secondary bile acids, and
indoles can modify receptor sensitivity, regulate
inflammatory pathways, and influence the blood-brain
barrier, thereby affecting the therapeutic outcomes of
antibiotics, anticancer agents, immunotherapies, and
neuroactive drugs (Anwer et al., 2025; Gasaly et al.,
2021). For example, gut microbiota composition has
been linked to the success of immune checkpoint
inhibitors in cancer therapy, with specific taxa such as
Bifidobacterium and Akkermansia enhancing antitumor
immunity (X. Li et al., 2022; Simpson et al., 2023).
These results underscore a bidirectional relationship in
which drugs can also remodel the microbial ecosystem,
sometimes leading to unintended consequences such as
antibiotic resistance, or altered drug - drug interactions,
and dysbiosis (Cusumano et al., 2025).

The clinical implications of these insights are profound.
Inter-individual variability in drug response long
attributed to genetic polymorphisms and environmental
factors can now be partly explained by differences in
microbial composition and function (Y. Li et al., 2016).
Personalized pharmacotherapy may thus require
integrating microbiome profiling with
pharmacogenomics to predict drug efficacy and toxicity.
Emerging strategies such as microbiota transplantation,

targeted probiotics, prebiotics, and engineered microbial
consortia hold promise for modulating the gut
microbiome to optimize drug outcomes (Dash et al.,
2024). Moreover, computational models and artificial
intelligence are being leveraged to predict microbe—drug
interactions and guide the rational design of microbiome-
informed therapeutics (K. Wu et al.,, 2024). In this
context, the microbiome is no longer a peripheral
consideration but a central pharmacological determinant.
Understanding its role in drug disposition and action
offers a transformative framework for precision
medicine, where therapeutic regimens are tailored not
only to the patient’s genome but also to their unique
microbial landscape.

1.2. Nutritional Modulation as a Therapeutic Lever
Diet is one of the most powerful and modifiable factors
shaping the composition and metabolic activity of the gut
microbiome, thereby indirectly influencing drug
pharmacokinetics and pharmacodynamics (Conlon &
Bird, 2015). Nutritional interventions can act as
therapeutic levers to enhance or mitigate microbiome-
drug communications, offering a cost effective and
patient-friendly strategy to optimize pharmacotherapy
outcomes (Daoust et al., 2021). Unlike pharmacological
agents that target specific receptors, dietary components
exert broad systemic and local effects, providing a
multifaceted means of modulating microbial ecology,
host metabolism, and drug disposition (Lindell et al.,
2022). While pharmacogenomics has advanced the
personalization of drug therapy, genetic variation alone
cannot completely explain interindividual differences in
drug response (Evans & Johnson, 2001). Equally, diets
rich in saturated fats and simple sugars favor bile-tolerant
and pro-inflammatory species that may enhance drug
toxicity. Probiotics (live beneficial microbes), prebiotics
(fermentable substrates), and synbiotics (combinations)
represent targeted nutritional tools capable of remodeling
microbial communities to favor drug efficacy and reduce
adverse effects (Habteweld & Asfaw, 2023).

The mechanistic basis for this influence lies in the ability
of dietary components to serve as substrates for
microbial fermentation, leading to the production of
bioactive metabolites such as SCFAs, secondary bile
acids, indoles, and phenolic compounds (L. S. Zhang &
Davies, 2016). These metabolites can modulate host
drug-metabolizing enzymes like cytochrome P450s,
transporters such as P-glycoprotein, and nuclear
receptors including PXR and FXR, ultimately affecting
drug absorption, distribution, and clearance (Basinska-
Ziobron et al., 2025; Mohammed & Zalzala, 2025). At
the same time, diet exerts selective pressure on microbial
taxa, favoring species that enhance or diminish specific
metabolic pathways. High fiber diets, for example,
enrich SCFA-producing bacteria  such as
Faecalibacterium and Roseburia, which can regulate
hepatic drug metabolism and improve intestinal barrier
integrity, whereas high-protein diets may favor
proteolytic species that produce metabolites capable of
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altering drug activity or toxicity (Y. Zhao et al., 2025).
Certain nutrients or bioactive compounds can also
directly interact with drugs or alter gastric pH,
influencing solubility and absorption (Chai et al., 2018).
Poly-phenols such as quercetin and catechins can inhibit
intestinal B-glucuronidase, potentially reducing the
reactivation of drugs like irinotecan and mitigating
gastrointestinal toxicity (Mahdy et al., 2023).

This dietary leverage opens therapeutic opportunities
ranging from the use of prebiotics and fiber-enriched
diets to promote beneficial microbes and improve gut
barrier function, to probiotic-fortified foods that stabilize
gut ecology and reduce side effects of antibiotics or
chemotherapy  (Holscher, 2017). Polyphenol-rich
functional foods, including green tea catechins,
resveratrol, and curcumin, exert prebiotic-like effects
and modulate host xenobiotic metabolism (Plamada &
Vodnar, 2022). Precision nutrition approaches that
integrate metagenomic sequencing with dietary analytics
are emerging, enabling the tailoring of dietary regimens
to an individual’s microbial profile to improve drug
response, enhance immunotherapy efficacy, or reduce
statin intolerance (Erikainen & Chan, 2019).

Nutritional modulation thus provides a non-invasive
adjunct to pharmacological strategies, allowing
clinicians to fine-tune drug outcomes by altering diet
rather than drug structure or dose. Personalized dietary
interventions can be incorporated into microbiome-
informed precision medicine, where specific food-based
therapies are co-designed with drug regimens to reduce
adverse effects or enhance therapeutic benefit. Ongoing
clinical trials are already investigating synbiotics,
targeted dietary fibers, and fermented foods as co-
therapies in cancer, metabolic diseases, and
neuropsychiatric conditions. By strategically harnessing
diet, researchers and clinicians can reshape the
microbiome—-drug interface to improve drug efficacy,
reduce toxicity, and advance integrated nutrition—
pharmacology interventions for precision medicine (Fig.
1).

This review aims to integrate mechanistic, preclinical,
and clinical evidence on the interplay between the gut
microbiome and drug efficacy, with a particular focus on
nutritional interventions as modulators of this interface.
We first summarize microbial pathways implicated in
drug  metabolism, including direct enzymatic
transformations (reduction, hydrolysis, deconjugation)
and indirect effects on host enzymes and transporters.
Next, we discuss nutritional strategies ranging from fiber
enrichment to probiotic and synbiotic formulations that
can beneficially modulate these pathways. Finally, we
explore clinical applications and emerging technologies,
such as microbiome-based biomarkers and precision
nutrition approaches, that promise to translate these
insights into improved pharmacotherapy outcomes. By
framing nutritional interventions as an accessible means
to manipulate the microbiome—drug axis, we highlightan

actionable  frontier ~ for  precision  medicine.
Understanding how diet and targeted supplementation
shape microbial drug metabolism will not only improve
therapeutic efficacy but also reduce adverse drug
reactions, a leading cause of morbidity and healthcare
cost worldwide.
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Figure 1. Conceptual Overview of Gut Microbiome—
Drug Interactions

Mechanisms of Gut-Microbiome-Drug Interaction
The human gut microbiome plays a crucial role in
modulating the pharmacokinetics and
pharmacodynamics of orally administered drugs. This
interaction occurs through multiple mechanisms,
influencing drug absorption, metabolism, efficacy, and
toxicity. Understanding these mechanisms is essential
for optimizing therapeutic strategies and minimizing
adverse effects. The gut microbiome influences drug
efficacy through a multifaceted network of direct
biochemical transformations, indirect host—microbe
crosstalk, and immune-metabolic  signaling.
Understanding these pathways provides the mechanistic
foundation for leveraging nutritional interventions to
optimize pharmacotherapy (Fig. 2).

2.1. Direct Microbial Metabolism of Drugs

The gut microbiome exerts a profound influence on drug
efficacy and safety through direct microbial metabolism,
a process in which bacterial enzymes chemically
transform drugs within the intestinal lumen (Feng et al.,
2020; Pant et al., 2023). These transformations can result
in activation, inactivation, or the production of toxic
metabolites, significantly altering therapeutic outcomes.
Common microbial reactions include reduction,
hydrolysis, dehydroxylation, and deamination, reflecting
the diverse enzymatic repertoire of gut bacteria
(Krautkramer et al., 2021). Recently, Gao et al. (2022)
reported that B-glucuronidase produced by certain
bacterial species can hydrolyze drug-glucuronide
conjugates, reversing host-mediated detoxification and
reactivating compounds such as the chemotherapeutic
irinotecan, which contributes to gastrointestinal toxicity.
Similarly, nitro- and azo-containing drugs may undergo
reductive cleavage by microbial reductases, producing
metabolites with altered pharmacological activity (Ryan,
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2017; Ryan et al., 2011). Hydrolytic reactions mediated
by bacterial esterases and sulfatases can also convert
prodrugs into their active forms or release free drugs
from conjugated derivatives (Yang et al., 2011).
Additionally, the microbial community can generate
novel metabolites through reactions such as
dehydroxylation and deamination, which may enhance
or reduce drug potency (van Kessel et al., 2020;
Venisetty & Ciddi, 2005). These direct metabolic
processes are highly dependent on the composition and
enzymatic capacity of an individual’s gut microbiota,
contributing to interpatient variability in drug response
(Q. Zhao et al., 2023). Understanding the mechanisms
and specific microbial enzymes involved in direct drug
metabolism provides opportunities to predict and
modulate therapeutic outcomes, for instance through
targeted probiotic, prebiotic, or dietary interventions,
thereby advancing precision pharmacotherapy (Feng et
al., 2020; Shukla et al., 2024).

Several well-characterized examples highlight the
clinical significance of direct microbial drug
metabolism. The cardiac glycoside digoxin is partially
inactivated by Eggerthella lenta through a specific
cardiac glycoside reductase, reducing the drug’s
bioavailability and therapeutic effect (Haiser et al.,
2014). The anti-inflammatory agent sulfasalazine,
designed as a prodrug, requires bacterial azoreductases
in the colon to cleave its azo bond and release the active
5-aminosalicylic acid, illustrating the beneficial aspect of
microbial activation (Sousa et al., 2014). Similarly, the
antidiabetic drug metformin undergoes microbial
transformation that can influence its gastrointestinal
tolerability and glucose-lowering efficacy (Szymczak-
Pajor et al., 2025). Antibiotics such as chloramphenicol
and rifampicin are susceptible to nitroreduction and
deacetylation, respectively, by intestinal bacteria,
potentially affecting drug potency and contributing to
resistance development (Urban-Chmiel et al., 2022).
Certain  non-steroidal  anti-inflammatory  drugs
(NSAIDs) are also reactivated in the gut following
bacterial ~ B-glucuronidase—mediated  deconjugation,
which can promote enterohepatic recirculation and
increase mucosal injury (X. Wang et al., 2021). These
examples underscore the bidirectional consequences of
microbial metabolism either enabling therapeutic
activation of prodrugs or generating toxic metabolites
that compromise safety (J. Wang & Zhou, 2025).
Recognizing these microbe—drug relationships is crucial
for predicting interindividual variability, guiding dose
adjustments, and designing interventions to manipulate
the gut microbiome for improved pharmacological
outcomes (Q. Zhao et al., 2023).

2.2. Indirect Modulation of Host Pharmacokinetics

The gut microbiome can influence drug disposition not
only through direct chemical transformation but also by
indirectly modulating host pharmacokinetics, thereby
altering absorption, distribution, metabolism, and
excretion (J. Zhang et al., 2018). Microbial metabolites

such as short-chain fatty acids, secondary bile acids, and
indole derivatives act as signaling molecules that
regulate host gene expression involved in xenabiotic
metabolism (Liu et al., 2023). These compounds can
activate nuclear receptors, including the PXR,
constitutive androstane receptor (CAR), and AhR, which
in turn control the transcription of cytochrome P450
enzymes, UDP-glucuronosyltransferases, and drug
transporters (Hakkola et al.,, 2018). Through this
regulatory network, the microbiota can enhance or
suppress hepatic and intestinal enzyme activity, thereby
accelerating or slowing the metabolic clearance of
numerous pharmaceuticals (Q. Zhao et al., 2023). In
addition, microbial modulation of bile acid pools
influences  enterohepatic  circulation and the
solubilization of lipophilic drugs, indirectly affecting
their systemic exposure. Changes in intestinal
permeability and local inflammation, both shaped by
microbiome composition, further impact drug absorption
and first-pass metabolism (Pavlovi¢ et al., 2018). These
effects are highly individualized, as differences in
microbial diversity, dietary patterns, and antibiotic use
can  produce significant  variability in  the
pharmacokinetic profiles of drugs that depend on host
enzyme and transporter systems (Tsunoda et al., 2021).
Even without direct metabolism, the microbiome can
reshape the host’s metabolic capacity (Tremaroli &
Béckhed, 2012). Understanding this indirect regulatory
role of the gut microbiota is critical for predicting
interpatient differences in drug efficacy and toxicity and
offers new opportunities to optimize therapy through
microbiome-targeted interventions.

2.2.1. Bile Acid Pool and Drug Solubility

Bile acids, synthesized from cholesterol in the liver and
secreted into the intestine via bile, act as natural
surfactants that emulsify dietary lipids and facilitate
micelle formation (Sarenac & Mikov, 2018). The bile
acid pool plays a pivotal role in determining the
solubility, dissolution, and eventual absorption of orally
administered drugs (Pavlovi¢ et al.,, 2018). Their
amphipathic structure possessing both hydrophilic and
hydrophobic domains enables them to solubilize
lipophilic compounds, including poorly water-soluble
drugs, within mixed micelles (Faustino et al., 2016). This
process enhances the dissolution rate of drugs in the
intestinal lumen and improves their bioavailability. The
composition and size of the bile acid pool are not static;
they are dynamically regulated by hepatic synthesis,
intestinal reabsorption, and microbial metabolism
(Larabi et al., 2023). Intestinal bacteria, particularly
members of the genera Clostridium, Bacteroides, and
Lactobacillus, deconjugate and transform primary bile
acids (e.g., cholic acid, chenodeoxycholic acid) into
secondary forms (e.g., deoxycholic acid, lithocholic
acid) (Ridlon et al., 2006, Ridlon et al., 2020). These
microbial conversions alter the hydrophobicity and
critical micelle concentration of the bile acid pool,
directly influencing the solubilization capacity for
lipophilic drugs (Enright et al., 2017). For example, a
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higher proportion of secondary bile acids typically
increases micelle hydrophobicity, potentially improving
solubilization of fat-soluble drugs but also risking
precipitation if the balance between hydrophilic and
hydrophobic bile acids is disrupted (Pavlovi¢ et al.,
2018).

Dietary patterns and nutritional interventions can further
modulate bile acid synthesis and microbial metabolism,
thereby impacting drug solubility (P. Gao et al., 2024).
High-fiber diets, for instance, bind bile acids and
promote their fecal excretion, prompting hepatic
synthesis of new bile acids and altering pool composition
(Rowe & Winston, 2024). Conversely, diets rich in fat
can increase bile acid secretion and favor a more
hydrophobic bile acid profile, enhancing the micellar
solubilization of certain lipophilic drugs (Faustino et al.,
2016). Probiotic or prebiotic supplementation may shift
gut microbial populations, influencing bile salt hydrolase
activity and secondary bile acid formation, with
downstream effects on the solubility and absorption of
orally delivered pharmaceuticals (Enright et al., 2017).
Clinically, disturbances in bile acid homeostasis such as
those seen in liver disease, bile acid malabsorption, or
gut dysbiosis can impair the solubility of bile-dependent
drugs like cyclosporine, tacrolimus, and certain
antifungal agents (Ticho et al., 2020). Understanding the
interplay between the gut microbiome, bile acid pool,
and drug solubility opens opportunities for tailored
nutritional strategies to optimize pharmacotherapy
outcomes. Interventions such as targeted prebiotics, bile
acid sequestrants, or specific dietary fats may be
leveraged to restore or enhance bile-mediated drug
solubilization, ultimately improving drug efficacy and
patient response.

2.2.2. Short-Chain Fatty Acids (SCFAS)

Short-chain fatty acids (SCFAs) are key microbial
metabolites produced in the colon through the anaerobic
fermentation of dietary fibers, resistant starches, and
other indigestible carbohydrates (Disca et al., 2025;
Topping & Clifton, 2001). The primary SCFAs acetate,
propionate, and butyrate are generated in molar ratios of
roughly 60:20:20, although these proportions vary with
diet, microbiome composition, and intestinal transit time
(Hernandez et al., 2019). SCFAs serve as essential
signaling molecules and energy sources, bridging the
metabolic activities of the gut microbiota with host
physiology (Den Besten et al., 2013). Their diverse
functions extend beyond local gut effects, influencing
drug metabolism, absorption, and pharmacodynamics.
One of the primary ways SCFAs modulate drug efficacy
is through the regulation of intestinal barrier integrity and
luminal pH. By lowering the colonic pH, SCFAs enhance
the ionization state and solubility of certain weakly basic
drugs, which can increase their dissolution and passive
diffusion across the epithelium (Dima et al., 2020).
Butyrate, in particular, supports tight junction protein
expression and strengthens the mucosal barrier,
indirectly impacting drug permeability and protecting

drugs from premature degradation (Knudsen et al.,
2018). Moreover, SCFAs serve as energy substrates for
colonocytes, supporting  epithelial  health and
maintaining a physiological environment conducive to
efficient drug absorption (Disca et al., 2025).

SCFAs also exert systemic effects that influence
pharmacokinetics and pharmacodynamics. They act as
ligands for G-protein-coupled receptors (e.g., GPR41,
GPR43) and modulate histone deacetylase (HDAC)
activity, thereby regulating gene expression in the liver
and other tissues involved in drug metabolism (Liu et al.,
2024). The propionate has been shown to influence
hepatic gluconeogenesis and cytochrome P450 enzyme
activity, potentially altering the biotransformation and
clearance of drugs such as antidiabetics or statins (G. Y.
Wang et al., 2023). Acetate can serve as a substrate for
cholesterol and fatty acid synthesis, indirectly affecting
bile acid production and the solubilization of lipophilic
compounds (R. Wang et al., 2022).

Nutritional strategies play a critical role in shaping SCFA
production. Diets rich in soluble fibers (e.g., inulin,
pectin, B-glucans), resistant starch, and prebiotics
promote the proliferation of SCFA-producing bacteria
such as Faecalibacterium prausnitzii, Roseburia, and
Bifidobacterium (Baky et al., 2024; de Oliveira et al.,
2024). Increased SCFA output from these diets can
improve the absorption and bioavailability of orally
administered drugs while reducing interindividual
variability in drug response (Wilkinson, 1997).
Conversely, low-fiber, high-fat diets diminish SCFA
production, potentially impairing drug solubility and
metabolism. Supplementation with specific fibers,
probiotics, or synbiotics offers a targeted approach to
enhance SCFA generation and optimize
pharmacotherapy outcomes (S. Zhang et al., 2021).
Clinically, disruptions in SCFA production such as those
occurring in inflammatory bowel disease, antibiotic-
induced dysbiosis, or metabolic disorders can
compromise drug efficacy by altering gut permeability,
luminal pH, and host metabolic pathways (Cusumano et
al., 2025; Duan et al., 2022). Understanding the dynamic
interplay between SCFAs, the gut microbiome, and drug
metabolism provides a foundation for designing dietary
interventions aimed at improving therapeutic responses
(Q. Zhao et al., 2023). Incorporating SCFA-promoting
foods or supplements into patient care may help stabilize
the gut environment, enhance drug solubility, and fine-
tune pharmacokinetic profiles for better clinical
outcomes.

2.2.3. Gut Barrier Integrity

Gut barrier integrity is a critical determinant of drug
absorption, metabolism, and overall pharmacological
efficacy. The intestinal barrier is a multi-layered defense
system composed of the mucus layer, epithelial cells,
tight junction proteins, immune components, and the
resident microbiota (Guo et al., 2025). Its primary
function is to regulate the selective permeability of
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nutrients and xenaobiotics, allowing beneficial
compounds to pass into circulation while restricting the
entry of pathogens and toxins (Patra et al., 2019). A
healthy gut barrier ensures that orally administered drugs
reach their intended absorption sites in a stable and
predictable manner, whereas barrier dysfunction can lead
to variable pharmacokinetics, altered bioavailability, and
increased risk of adverse drug reactions (Dahlgren &
Lennernds, 2019).

The epithelial layer, formed by a single sheet of
enterocytes, is sealed by tight junctions made up of
proteins such as claudins, occludins, and zonula
occludens. These tight junctions maintain paracellular
permeability and control the passage of hydrophilic
drugs that rely on passive diffusion (Slifer & Blikslager,
2020). Gut microbes play a central role in regulating
these junctions. Commensal bacteria such as
Lactobacillus and Bifidobacterium produce metabolites
particularly SCFAs like butyrate that reinforce tight
junction integrity by activating AMP-activated protein
kinase (AMPK) and enhancing the expression of barrier-
protective proteins (Peng et al.,, 2009). Conversely,
dysbiosis, characterized by an overgrowth of pathobionts
such as Escherichia coli or Clostridioides difficile, can
trigger inflammation, disrupt tight junctions, and
increase intestinal permeability (“leaky gut”), leading to
uncontrolled drug absorption and unpredictable plasma
concentrations (Petersen, 2022). A compromised gut
barrier can significantly influence drug efficacy and
toxicity. Increased permeability facilitates the
translocation of lipopolysaccharides (LPS) and other
microbial products into the bloodstream, activating
immune pathways and hepatic cytochrome P450
enzymes that modify drug metabolism (Ghosh et al.,
2020). This immune activation can either accelerate drug
clearance or alter drug targets, reducing therapeutic
effectiveness (Donald Harvey & Morgan, 2014). For
example, in conditions such as inflammatory bowel
disease, celiac disease, or chronic alcohol consumption,
barrier dysfunction has been linked to altered
pharmacokinetics of antibiotics, immunosuppressants,
and antidiabetic medications (Kénig et al., 2016).

Nutritional interventions are powerful modulators of gut
barrier integrity and can indirectly influence
pharmacotherapy outcomes. Diets rich in soluble fiber,
resistant starch, and prebiotics promote the growth of
SCFA-producing  bacteria, increasing  butyrate
availability to strengthen epithelial junctions (Ali et al.,
2022). Polyphenol-rich foods such as berries, green tea,
and cocoa exert antioxidant and anti-inflammatory
effects, helping preserve tight junction function
(Kaulmann & Bohn, 2016). Fermented foods and
probiotics (e.g., Lactobacillus rhamnosus,
Bifidobacterium longum) enhance mucin production and
reduce epithelial inflammation, creating a more stable
environment for drug absorption (Sanz et al., 2008).
Conversely, high-fat, high-sugar diets and excessive
alcohol intake can disrupt the microbiota, deplete

SCFAs, and impair barrier function, thereby reducing
drug efficacy (Jamar et al., 2021). From a clinical
perspective, preserving gut barrier integrity offers a
promising strategy to improve pharmacotherapy
outcomes. Personalized dietary plans incorporating
prebiotics, probiotics, or postbiotics can help stabilize
the intestinal environment, reduce inflammatory triggers,
and ensure consistent drug absorption. Understanding
the interplay between gut barrier health, microbial
metabolites, and drug pharmacokinetics enables the
development of nutrition-based adjunct therapies that
enhance drug bioavailability, minimize variability in
patient responses, and reduce the risk of side effects
(Mousa et al., 2023).

2.3. Immune and Neuroendocrine Crosstalk

The gut microbiome exerts profound influence on both
the immune and neuroendocrine systems, creating a
bidirectional network that shapes drug efficacy,
pharmacokinetics, and therapeutic outcomes (Tahri et
al., 2025). This crosstalk often referred to as the gut
immune brain axis integrates microbial metabolites, host
immune signals, and neuroendocrine pathways to
regulate systemic inflammation, stress responses, and
metabolic homeostasis (Kasarello et al., 2023).
Disruptions in this intricate communication can alter
drug metabolism, modify target receptor sensitivity, and
lead to interindividual variability in pharmacotherapy.

2.3.1. Microbiome-Immune Interactions and
Drug Response

Gut microbes continuously interact with intestinal
immune cells, shaping both innate and adaptive
immunity. Commensal bacteria stimulate pattern
recognition receptors (PRRs), such as Toll-like receptors
(TLRs) and NOD-like receptors, on epithelial and
immune cells, promoting a balanced immune tone
(Oviedo-Boyso et al., 2014). Microbial metabolites,
including SCFAs like butyrate and propionate, regulate
the differentiation of regulatory T cells (Tregs) and
modulate cytokine production, dampening excessive
inflammation (C. H. Kim et al., 2014). These immune-
modulatory effects can directly influence drug efficacy.
For example, anti-inflammatory microbial activity may
enhance the action of immunosuppressants (e.g.,
corticosteroids) by reducing pro-inflammatory cytokines
that otherwise accelerate drug clearance (Maseda et al.,
2019). Conversely, chronic low-grade inflammation
driven by gut dyshiosis can upregulate hepatic
cytochrome P450 enzymes and efflux transporters such
as P-glycoprotein, increasing drug metabolism and
lowering therapeutic concentrations (Yin et al., 2023).

2.3.2. Neuroendocrine
Pharmacokinetics

The gut microbiome also communicates with the
hypothalamic—pituitary—adrenal (HPA) axis and enteric
nervous system through metabolites (e.g., SCFAs,
tryptophan derivatives) and microbial neurochemicals
(e.g., y-aminobutyric acid, serotonin precursors) (Zhou
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et al., 2025). Activation of the HPA axis under stress
triggers the release of corticotropin-releasing hormone
(CRH), adrenocorticotropic hormone (ACTH), and
cortisol, which can alter intestinal permeability, slow
gastrointestinal transit, and affect drug absorption
(Marwaha et al., 2025). Cortisol also regulates the
expression of hepatic enzymes and transporters,
modifying first-pass metabolism and drug clearance (K.
Gao et al., 2020). Dysbiosis-driven changes in
tryptophan metabolism can shift serotonin availability,
indirectly  influencing gut motility and the
pharmacokinetics of drugs dependent on transit time,
such as sustained-release formulations (Bosi et al.,
2020).

2.3.3.  Integrated Immune-Neuroendocrine
Effects on Therapeutics

The convergence of immune and neuroendocrine
signaling creates a feedback loop in which microbiota-
driven inflammation affects neuroendocrine activity, and
neuroendocrine hormones reciprocally shape immune
responses (Park et al., 2025). This dynamic can
significantly impact classes of drugs including
antidepressants, antipsychotics, immunotherapies, and
chemotherapeutics (Sun et al., 2016). For instance,
heightened stress responses may decrease the efficacy of
selective serotonin reuptake inhibitors (SSRIs) by
altering serotonin metabolism, while immune activation
can affect monoclonal antibody clearance (Vaswani et
al., 2003).

2.3.4. Nutritional Modulation of Immune-
Neuroendocrine Crosstalk

Dietary interventions provide a powerful means to
regulate this axis and optimize drug outcomes. Prebiotics
such as inulin, galactooligosaccharides, and resistant
starch enhance SCFA production, reinforcing Treg
activity and reducing pro-inflammatory cytokines
(Guarino et al., 2020). Polyphenol-rich foods (e.g., green
tea, berries, turmeric) exhibit antioxidant and anti-
inflammatory properties, supporting immune balance
and mitigating  stress-induced HPA  activation
(Winiarska-Mieczan et al., 2023). Probiotic strains like
Lactobacillus rhamnosus and Bifidobacterium
longum have been shown to modulate cortisol levels and
improve mood, indirectly stabilizing drug absorption and
metabolism (Tette et al., 2022). Omega-3 fatty acids and
fermented foods further strengthen  gut-brain
communication by reducing systemic inflammation and
supporting neuronal signaling pathways (Zinkow et al.,
2024).

2.3.5. Clinical Implications

Maintaining a balanced gut microbiome through targeted
nutrition can help stabilize immune and neuroendocrine
responses, reducing variability in drug absorption and
metabolism (Wiertsema et al., 2021). Personalized
dietary plans incorporating probiotics, prebiotics, and
polyphenols may enhance therapeutic outcomes for

patients  receiving psychotropic ~ medications,
immunomodulators, or chronic disease therapies
(Bubnov et al., 2015). By leveraging the gut-immune—
brain axis, clinicians can use nutritional strategies to
fine-tune drug efficacy, minimize adverse effects, and
improve overall pharmacotherapy success.

2.4. Interindividual Variability

Interindividual variability in drug response is a critical
challenge in clinical pharmacology, and the gut
microbiome has emerged as a key determinant of these
differences. While host genetics, age, sex, and lifestyle
are well-recognized contributors, the composition and
metabolic activity of the gut microbiota add an
additional, highly dynamic layer of variability that can
profoundly influence drug absorption, metabolism, and
therapeutic efficacy (El Aidy et al., 2016). Each person
harbors a unique microbial “fingerprint,” shaped by diet,
environment, antibiotic use, and health status, which in
turn dictates the production of enzymes, metabolites, and
signaling molecules that interact with drugs in distinct
ways (Zaidi et al., 2023).

2.4.1. Microbial Composition and Metabolic
Capacity

The relative abundance of specific bacterial taxa and
their  functional genes governs the metabolic
transformations that orally administered drugs undergo
before reaching systemic circulation (Zimmermann et
al., 2019). Certain bacteria, such as Eggerthella lenta,
Bacteroides fragilis, and Clostridium scindens,
express reductases, hydrolases, or dehydroxylases that
can activate, inactivate, or toxify drugs (Martinelli &
Thiele, 2024). For example, E. lenta can inactivate the
cardiac drug digoxin by reducing it to a non-therapeutic
form, and the extent of this reaction varies depending on
the strain’s arginine-dependent operon expression
(Haiser et al.,, 2014). Similarly, interindividual
differences in microbial B-glucuronidase activity can
influence the enterohepatic recycling of drugs like
irinotecan, impacting both efficacy and toxicity (Parvez
etal., 2021).

2.4.2. Host—Microbiome Interactions

Microbiome-driven variability does not occur in
isolation but interacts with host factors to create complex
pharmacokinetic profiles. Microbial metabolites such as
SCFAs, secondary bile acids, and tryptophan derivatives
can modulate host pathways including cytochrome P450
enzyme activity, transporter expression (e.g., P-
glycoprotein), and immune signaling (Liu et al., 2022).
These interactions affect drug absorption rates,
distribution patterns, and clearance, leading to significant
patient-to-patient differences even when identical doses
are administered (Teo et al., 2015). For instance,
variations in bile acid pools shaped by microbial activity
can alter the solubility and bioavailability of lipophilic
drugs, while SCFA production may regulate epigenetic
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mechanisms that control hepatic enzyme expression
(Pavlovi¢ et al., 2016).

2.4.3. Impact of Diet and Lifestyle

Dietary patterns strongly influence interindividual
variability by shaping microbial composition and
metabolic output. A high-fiber, plant-rich diet promotes
SCFA-producing bacteria such as Faecalibacterium
prausnitzii, enhancing gut barrier integrity and
potentially improving drug absorption (Meiners et al.,
2025). Conversely, high-fat or high-protein diets favor
bile-tolerant microbes like Bilophila wadsworthia,
altering bile acid profiles and drug solubility (Tong et al.,
2021). Alcohol consumption, smoking, and circadian
rhythm disruptions further modulate the microbiome,
contributing to unpredictable drug responses (Forsyth et
al., 2015).

2.4.4. Nutritional Reduce
Variability

Personalized nutrition represents a promising approach
to mitigate microbiome-related differences in drug
efficacy. Prebiotics, probiotics, and synbiotics can be
tailored to increase beneficial microbial taxa and

stabilize metabolic outputs relevant to specific drugs

Strategies to

(Edwards et al., 2020). For example, targeted probiotic
supplementation may reduce 3-glucuronidase activity to
lower irinotecan toxicity or enhance SCFA production to
strengthen gut barrier function for improved oral drug
absorption (Yue et al., 2021). Diets enriched in
polyphenols, omega-3 fatty acids, or resistant starch may
also help harmonize microbial functions and reduce
interindividual pharmacokinetic variability.

2.4.5. Clinical Implications:

Understanding the contribution of the gut microbiome to
interindividual variability allows for more precise
pharmacotherapy. Microbiome profiling, combined with
dietary assessment, can guide clinicians in selecting
optimal drug dosages, identifying patients at risk for
altered drug metabolism, and designing nutritional
interventions to enhance therapeutic outcomes
(Cammarota et al., 2020). As microbiome sequencing
and metabolomic tools become more accessible,
integrating microbiome-informed dietary strategies into
precision medicine will be essential for reducing
variability, improving drug efficacy, and minimizing
adverse effects across diverse patient populations
(Kashyap et al., 2017).

Table 1. Representative drugs affected by gut microbiome—mediated metabolism, key microbial species/enzymes
involved, underlying mechanisms, and resulting clinical outcomes.
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reduction of digoxin Reduced
Eggerthella to inactive digoxin efficacy in
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cgr) drug concentrations potential need for
and therapeutic  dose adjustment.
efficacy.
Lower
Conversion Feakd p:asn:a
Enterococcus  of levodopa to evodopa evels .
. . L (Cmax); potential (Miyaue
Levodopa faecalis (tyrosine dopamine in the gut .
S worsening of motor et al., 2025)
decarboxylase) lumen, and limiting i
systemic absorption symptom control in
Parkinson’s disease
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Alters gut Improved
Akkermansia mlcroblpt_a glycemic c_ontro_l,
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degrading), SCFA- : . vity, @ (De La
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Metformin producing bacteria (e.g., . . Cuesta-Zuluaga et
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metabolism and
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Fig. 2. Mechanistic Pathways of Nutritional Modulation

3. Nutritional Interventions to Modulate Microbiome Drug Interactions

Dietary strategies represent one of the most effective and non-invasive tools for modulating the gut microbiome to improve
drug efficacy and safety (Jacobs et al., 2009). Targeted nutritional interventions can reshape microbial composition,
enhance the production of beneficial metabolites, and stabilize intestinal functions that influence drug absorption,
metabolism, and clearance (Shang et al., 2024). Below are key approaches that harness nutrition to optimize microbiome—
drug interactions.

3.1. Prebiotics: Fueling Beneficial Microbes

Prebiotics are non-digestible dietary substrates such as inulin, fructooligosaccharides (FOS), galactooligosaccharides
(GOS), resistant starch, and certain polyphenols that selectively stimulate the growth and metabolic activity of beneficial
gut bacteria (Guarino et al., 2020). By serving as fermentation fuel for taxa like Bifidobacterium and Faecalibacterium,
prebiotics promote the production of SCFAs, which strengthen gut barrier integrity, lower luminal pH, and regulate host
immune responses (Ashaolu et al., 2021). These effects create a more favorable environment for drug solubility and
absorption, particularly for weakly basic drugs whose ionization is enhanced in slightly acidic conditions.

Prebiotics can also influence drug metabolism indirectly by modulating hepatic cytochrome P450 enzymes through SCFA-
mediated signaling pathways (Pan & Umapathy, 2024). For example, increased butyrate levels have been linked to the
suppression of pro-inflammatory cytokines that can upregulate drug-metabolizing enzymes, stabilizing pharmacokinetic
profiles (Jourova et al., 2022). Incorporating fiber-rich foods such as chicory root, onions, garlic, and whole grains can thus
reduce interindividual variability in drug response and improve therapeutic outcomes (Khalid et al., 2022).

3.2. Probiotics: Live Microbial Therapeutics

Probiotics are live microorganisms that confer health benefits when consumed in adequate amounts. Common strains
include Lactobacillus, Bifidobacterium, and Saccharomyces boulardii, which can restore microbial balance,
outcompete pathogenic species, and modulate drug—microbiome interactions (Prajapati et al., 2024). Probiotics produce
enzymes and metabolites that can directly or indirectly influence drug metabolism (Abdul Manan, 2025). For example,
certain Lactobacillus species produce B-glucosidase and bile salt hydrolase, affecting bile acid profiles and enhancing the
solubilization of lipophilic drugs (O’Flaherty et al., 2018).

Probiotic supplementation has also been shown to mitigate antibiotic-associated dysbiosis, reducing the risk of altered drug
pharmacokinetics and secondary infections (Dahiya & Nigam, 2023). Furthermore, probiotics may reduce intestinal
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inflammation and strengthen epithelial tight junctions, promoting predictable drug absorption. Strain-specific formulations
tailored to the pharmacological context for instance, Bifidobacterium breve for immunomodulatory drugs or
Lactobacillus rhamnosus for psychotropic agents can improve therapeutic consistency (Bocchio et al., 2024).

3.3. Synbiotics and Postbiotics

Synbiotics combine prebiotics and probiotics to deliver synergistic effects, enhancing the colonization and activity of
beneficial microbes while providing substrates for SCFA production (Markowiak & Slizewska, 2017). This dual approach
maximizes the microbiome’s ability to regulate drug absorption and metabolism. Clinical studies have demonstrated that
synbiotic interventions can reduce B-glucuronidase activity, thereby lowering the risk of drug reactivation and toxicity
(e.g., irinotecan-associated gastrointestinal side effects) (Mahdy et al., 2023). Postbiotics, in contrast, refer to non-viable
microbial components or metabolites such as SCFAs, bacteriocins, and extracellular polysaccharides that exert health
benefits without requiring live bacteria (Aggarwal et al., 2022). Postbiotics can mimic the functional effects of a balanced
microbiome, modulating gut pH, tightening epithelial junctions, and interacting with host receptors that influence
cytochrome P450 expression (Smolinska et al., 2025). These properties make postbiotics particularly valuable for patients
with compromised immunity or those unable to tolerate live probiotics.

3.4. Whole-Diet Approaches

Beyond targeted supplements, whole-diet strategies can induce broad and sustained changes in microbial ecology, thereby
influencing drug responses (Tini et al., 2025). Diets rich in plant-based fibers, polyphenols, and fermented foods enhance
microbial diversity and SCFA production, supporting stable pharmacokinetic profiles (Vila-Real et al., 2025). The
Mediterranean diet, for example, promotes taxa such as Roseburia and Akkermansia, which reinforce gut barrier function
and reduce systemic inflammation factors that can improve the bioavailability of orally administered drugs (Perrone &
D’Angelo, 2025). Conversely, Western-style diets high in fat and refined sugars promote bile-tolerant microbes like
Bilophila wadsworthia, which increase secondary bile acids and may unpredictably alter the solubility of lipophilic drugs
(Y. Wu et al., 2019). Transitioning to a fiber-rich, antioxidant-rich diet can help normalize microbial metabolism, reduce
inflammatory enzyme activation, and improve drug efficacy across a range of therapeutic classes, from statins to
chemotherapeutics (Estarriaga-Navarro et al., 2025).

3.5. Precision Nutrition: Matching Diet to Microbial Genotype

Emerging advances in metagenomics and metabolomics enable the development of precision nutrition strategies tailored
to an individual’s microbial genotype and metabolic profile (de Toro-Martin et al., 2017). Microbiome sequencing can
identify functional genes responsible for specific drug transformations, such as the cardiac glycoside reductase operon in
Eggerthella lenta, which inactivates the cardiac drug digoxin (Haiser et al., 2013). By identifying individuals with high-
risk microbial features, clinicians can design dietary plans to suppress or counteract these metabolic activities for instance,
increasing dietary arginine intake to inhibit digoxin reduction. Precision nutrition also considers interindividual differences
in SCFA production, bile acid metabolism, and transporter regulation, allowing for the selection of specific fibers,
polyphenols, or probiotic strains that align with a patient’s microbiome (Bianchetti et al., 2023). This personalized approach
holds promise for minimizing adverse drug reactions, optimizing dosing regimens, and improving therapeutic consistency
in conditions such as diabetes, cardiovascular disease, and cancer. Nutritional interventions offer a powerful, non-
pharmacological means to modulate microbiome—drug interactions. Whether through prebiotics, probiotics, synbiotics,
postbiotics, or precision dietary strategies, targeted nutrition can stabilize the gut environment, enhance drug solubility,
and regulate host metabolic pathways (H. Y. Li et al., 2021). Integrating microbiome-informed dietary plans into clinical
practice represents a critical step toward personalized pharmacotherapy, improving drug efficacy and reducing
interindividual variability in therapeutic outcomes (Shukla et al., 2024).

CLINICAL EVIDENCE AND CASE STUDIES

Clinical evidence increasingly demonstrates that the gut microbiome significantly influences drug efficacy across multiple
therapeutic areas. In oncology, baseline gut microbial diversity and composition have been linked to responses to immune
checkpoint inhibitors (ICIs) (Araji et al., 2022). Responders often harbor taxa that enhance systemic and tumor-specific
immune responses (Andrews et al., 2018). Interventional studies using fecal microbiota transplantation (FMT) from ICI
responders into non-responders have, in some cases, restored therapeutic sensitivity, accompanied by increases in tumor-
infiltrating CD8+ T cells and favorable immune gene expression signatures (Jamal et al., 2023). Mechanistically, microbial
modulation of antigen presentation, T-cell priming, and SCFA- and bile-acid-mediated effects on the tumor
microenvironment are implicated. These findings suggest microbiome profiling could become a predictive biomarker and
guide adjunctive microbiome-targeted strategies in cancer therapy (Tong & Lou, 2025).

4.1. Oncology

Emerging clinical studies demonstrate that gut microbiome composition profoundly influences the efficacy of immune
checkpoint inhibitors (ICIs), including PD-1/PD-L1 and CTLA-4 blockade. Patients with higher microbial diversity and
enrichment of taxa such as Akkermansia muciniphila, Faecalibacterium prausnitzii, and certain Bifidobacterium species
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exhibit improved antitumor responses and longer progression-free survival (Miller & Carson, 2020). Mechanistically, these
microbes enhance antigen presentation, promote T-cell priming, and modulate systemic and tumor microenvironment
immune activity through metabolites like SCFAs and secondary bile acids (Gomes et al., 2023). Interventional studies
using fecal microbiota transplantation (FMT) from ICI responders into non-responders have led to partial restoration of
therapeutic responses, including increases in tumor-infiltrating CD8+ T cells and favorable shifts in immune gene
expression (Verhoef et al., 2023). These findings suggest that baseline microbiome profiling may serve as a predictive
biomarker, and targeted microbiome modulation through diet, prebiotics, probiotics, or FMT represents a potential adjunct
strategy to enhance oncology therapeutics.

4.2. Cardiovascular Pharmacotherapy

The microbiome can directly modify drug pharmacokinetics, as exemplified by digoxin inactivation. Eggerthella lenta
strains expressing the cardiac glycoside reductase (cgr) operon metabolize digoxin into inactive derivatives, decreasing
systemic drug concentrations and therapeutic efficacy (Ganamurali & Sabarathinam, 2025). Clinical studies integrating
metagenomics and pharmacokinetic monitoring show that patients harboring high abundance of cgr-positive strains have
lower circulating digoxin levels and diminished clinical response (Verdegaal & Goodman, 2024). Diet influences microbial
gene expression; arginine-rich diets have been shown to inhibit cgr operon activity, thereby reducing microbial digoxin
inactivation (Sharma et al., 2019). These observations underscore the importance of microbiome assessment and dietary
modulation in optimizing cardiovascular pharmacotherapy and highlight potential precision nutrition strategies to mitigate
microbiome-mediated drug interactions.

4.3. Metabolic Disorders

In type 2 diabetes, the gut microbiome plays a pivotal role in modulating the effects of metformin (Lee et al., 2021). Clinical
investigations reveal that metformin alters gut microbial composition, increasing SCFA-producing bacteria such as
Bifidobacterium and Akkermansia, while also affecting bile acid metabolism (Y. Wang et al., 2024). These microbiome
shifts contribute to improved glucose homeostasis, enhanced insulin sensitivity, and modulation of gastrointestinal
tolerance (Aron-Wisnewsky & Clement, 2014). Interindividual variability in microbial composition correlates with
differences in glycemic response and side-effect profiles (Noce et al., 2019). Nutritional interventions such as high-fiber
diets, prebiotics, and targeted probiotics can enhance the abundance of beneficial taxa, promoting SCFA production,
improving gut barrier function, and potentially optimizing drug absorption and efficacy (Shang et al., 2024).

4.4. Neurological Disorders

Gut microbial metabolism significantly affects central nervous system drug bioavailability. In Parkinson’s disease,
Enterococcus faecalis expresses tyrosine decarboxylase (TyrDC) that converts levodopa into dopamine within the gut
lumen, limiting systemic absorption and reducing availability for the brain (Miyaue et al., 2025). Clinical studies
demonstrate that higher intestinal abundance of tyrDC genes correlates with lower plasma levodopa concentrations, greater
motor fluctuations, and reduced clinical efficacy (Y. Zhang et al., 2022). Interventions aimed at reducing small intestinal
bacterial overgrowth (SIBO) or selectively targeting decarboxylating microbes through diet, antibiotics, or probiotics have
been proposed to improve pharmacokinetics and clinical outcomes (Mustafa et al., 2025). These findings highlight the need
to consider gut microbial composition when optimizing therapy for CNS-active agents.

4.5. Antimicrobial Therapy

Broad-spectrum antibiotics have a profound impact on the gut microbiome, reducing diversity, depleting SCFA-producing
taxa, and altering bile acid metabolism (W. Wang et al., 2025). Such disruptions can affect the absorption, metabolism,
and systemic availability of concurrently or subsequently administered drugs, including chemotherapeutics,
immunomodulators, and central nervous system medications (Donald Harvey & Morgan, 2014). Clinical evidence
demonstrates that interventions such as fecal microbiota transplantation (FMT) or administration of defined microbiota-
based therapeutics can restore microbial balance, re-establish metabolic functions, and normalize pharmacokinetic profiles
(Zikou et al., 2024). Nutritional support through fiber-rich diets, prebiotics, and fermented foods further promotes recovery
of microbial diversity and functional capacity, reducing interindividual variability in drug response and improving
therapeutic outcomes after antibiotic-induced dysbiosis (Safarchi et al., 2025). Overall, these clinical observations highlight
the critical role of the gut microbiome in shaping drug efficacy across diverse therapeutic areas. Understanding
microbiome—drug interactions and implementing dietary or microbiome-targeted interventions can improve
pharmacotherapy, reduce adverse effects, and minimize interindividual variability, paving the way for precision medicine
approaches that integrate host-microbiome dynamics.

CHALLENGES, LIMITATIONS, AND FUTURE DIRECTIONS

Despite compelling mechanistic and clinical evidence, the integration of nutritional microbiome modulation into
pharmacotherapy faces significant scientific, regulatory, and logistical challenges. Addressing these barriers is critical to
translating proof-of-concept findings into routine clinical practice (Fig. 3).
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5.1. Interindividual Variability

One of the primary challenges is the high degree of interindividual variability in microbiome composition and function.
Each person harbors a unique microbial ecosystem shaped by genetics, diet, environment, age, medication history, and
disease state (Karkman et al., 2017). This variability can lead to markedly different drug responses, even among patients
receiving identical therapies. Predicting which individuals will benefit from microbiome-targeted interventions or
nutritional modulation remains difficult without precise microbial profiling (De Filippis et al., 2018). Additionally,
functional redundancy within the microbiome complicates predictions, as different microbial taxa may perform similar
biochemical transformations affecting drug metabolism (Moya & Ferrer, 2016).

Input Layer Analysis Layer Output Layer
(]
Patient profile Sequencing Al/ML data Personalized
* genomics metagenomics integration prescription
+ baseline microbiome  metabolomics Drug + Dietary Plan

+ dietary habits

Figure 3. Future Landscape of Precision Nutrition—Pharmacotherapy

5.2. Temporal Instability

The gut microbiome is dynamic and influenced by transient factors such as diet, infection, antibiotic exposure, circadian
rhythms, and lifestyle changes (Choi et al., 2021). These temporal fluctuations can alter microbial metabolic capacity and,
consequently, drug pharmacokinetics and pharmacodynamics (Nguyen et al., 2021). Short-term interventions may
therefore have variable effects depending on the baseline stability of the microbiome and the timing of drug administration
relative to dietary or microbial changes (Leeming et al., 2019). Sustaining beneficial microbiome configurations over time
presents a significant challenge for designing effective nutritional or microbial adjuncts to pharmacotherapy (Mimee et al.,
2016).

5.3. Mechanistic Complexity

The mechanisms through which the microbiome modulates drug efficacy are multifactorial and highly interconnected
(Song et al., 2023). Microbial metabolism can directly inactivate, activate, or transform drugs; influence bile acid
composition; produce metabolites such as short-chain fatty acids that regulate host enzymes and transporters; and modulate
immune and neuroendocrine pathways (S. Wang et al., 2024). Disentangling these overlapping effects to identify causative
mechanisms is difficult, particularly given the bidirectional interactions between host and microbiome (Witherden et al.,
2017). This complexity complicates the development of targeted interventions and the ability to predict drug outcomes
based solely on microbial composition (Lopatkin & Collins, 2020).

5.4. Regulatory and Ethical Considerations

Translating microbiome-targeted interventions into clinical practice involves navigating regulatory and ethical challenges
(Lim & Lim, 2025). Interventions such as fecal microbiota transplantation (FMT), live microbial therapeutics, or
genetically engineered probiotics raise safety concerns, including the risk of pathogen transmission, unintended metabolic
effects, and long-term ecological impacts on the host microbiome (Merrick et al., 2020). Regulatory frameworks for
approving microbiome-based or nutrition-driven pharmacotherapy adjuncts are still evolving, and clear standards for
safety, quality control, and clinical efficacy are needed (Rodriguez et al., 2025). Ethical considerations also arise regarding
donor selection, patient consent, and equitable access to advanced microbiome therapies (Mikail et al., 2020).
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5.5. Clinical Trial Design Challenges

Designing robust clinical trials to evaluate microbiome-mediated effects on drug efficacy is complex. Heterogeneity in
patient microbiomes, diet, lifestyle, and concomitant medications introduces confounding variables (Schupack etal., 2022).
Standardizing nutritional interventions, controlling for baseline microbiome differences, and defining appropriate
endpoints (e.g., pharmacokinetic changes, clinical response, metabolite production) are challenging (Gilbert et al., 2025).
Additionally, many microbiome-mediated effects are subtle, require large sample sizes to detect, and may vary over time,
further complicating trial design and interpretation (Johnson et al., 2020).

5.6. Emerging Technologies and Future Directions

Advances in multi-omics, high-resolution metagenomics, metabolomics, and computational modeling are providing new
tools to overcome these challenges. Functional characterization of microbial genes, real-time monitoring of metabolites,
and predictive modeling of microbiome—drug interactions can inform precision nutrition and personalized
pharmacotherapy strategies. Synthetic biology approaches, engineered probiotics, and microbiome-derived postbiotics
offer targeted interventions to modulate drug metabolism safely. Future research should focus on integrating longitudinal
microbiome data with host genomics, metabolomics, and clinical phenotyping to develop predictive frameworks.
Additionally, establishing standardized guidelines for microbiome-targeted nutritional interventions, optimizing trial
design, and addressing regulatory and ethical considerations will be critical to translating these insights into routine clinical
practice.

CONCLUSION

The gut microbiome is now recognized as a key
determinant of interindividual variability in drug
response, influencing pharmacokinetics,
pharmacodynamics, and therapeutic efficacy. Nutritional
strategies ranging from prebiotic fibers and probiotics to
polyphenol-rich diets and targeted dietary patterns offer
a practical, non-invasive approach to reshape microbial
composition and function, thereby optimizing
pharmacotherapy outcomes. Evidence from mechanistic
studies and early clinical trials demonstrates that diet can
modulate microbial enzymes responsible for drug
activation, deactivation, and enterohepatic recycling,
ultimately improving the safety and effectiveness of a
wide range of therapeutic agents. The successful
integration of microbiome-informed nutrition into
clinical practice will require key advancements,
including personalized profiling through rapid and cost-
effective metagenomics and metabolomics to match diets
with drug responses. Reliable biomarkers of microbial
drug-metabolizing capacity are needed to predict
individual treatment outcomes. Clear regulatory
frameworks must ensure the quality and consistency of
microbiome-targeted foods and supplements, while
adaptive clinical trial designs should incorporate flexible
dietary interventions alongside standard
pharmacotherapy. This holistic approach promises to
reduce adverse effects, maximize efficacy, and pave the
way for a new era of microbiome-aware, diet-integrated
precision medicine.
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