Journal of Rare Cardiovascular Diseases

RESEARCH ARTICLE

Morphometric Analysis of Nasal and Sphenoidal Region and its Clinical Relevance for the Transsphenoidal Approach in Pituitary Surgeries

Ponmalai¹, Srinivasan S¹, Anbarasan A¹, Sankara Narayanan G¹, Sameen Taj¹, S Kalayarasi¹ and J. Vijayakumar²

Department of Anatomy, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India

²Department of Anatomy, Sri Venkateshwaraa Medical College Hospital and Research Institute, Chennai 600067, Tamil Nadu, India

*Corresponding Author J. Vijayakumar

Article History Received: 09/07/2025 Revised: 23/08/2025 Accepted: 12/09/2025 Published: 30/09/2025 Abstract: Objective: To evaluate the influence of age, gender, side, and sinus condition on sphenoid sinus (SS) morphometry using cone-beam computed tomography (CBCT). Methods: Retrospective review of CBCT scans from 300 patients aged 16–86 years. SS morphology was assessed from DICOM files using semi-automated software. Outcomes included extension, shape, septation, volume, and maximum diameter, and were analyzed against age, gender, side, and sinus condition. Results: Age correlated significantly with sinus extension. Age, gender, and sinus condition were significantly associated with septation. Sinus volume differed by gender and sinus condition. Shape and side were not associated with morphometric features. Conclusion: SS morphometry is influenced by age, gender, and sinus health. Post-sellar extension predominates until middle age. Males and individuals with healthy sinuses tend to have larger sinus volumes than females and those with pathology.

Keywords: Sphenoid sinus, Morphometry, CBCT, Gender, Age, Septation .

INTRODUCTION

The sphenoidal sinus (SS) represents one of the most anatomically variable structures within the skull base, characterized by significant morphometric diversity that directly impacts neurosurgical approaches. This centrally located pneumatized cavity serves as a critical landmark for transsphenoidal surgical procedures, particularly for pituitary adenoma resection and other skull base pathologies. The SS develops from rudimentary pneumatization at 2-3 years of age, reaching mature configuration during adolescence, with continued expansion potentially occurring throughout adulthood.

Contemporary understanding of SS morphometry has evolved significantly with advances in three-dimensional imaging technologies. While conventional computed tomography (CT) has traditionally been the gold standard for paranasal sinus evaluation, cone-beam computed tomography (CBCT) offers distinct advantages including reduced radiation exposure, enhanced spatial resolution, and cost-effectiveness for targeted anatomical assessment. This technological advancement has enabled more precise characterization of SS morphometric variations, which is essential for preoperative surgical planning.

The clinical significance of SS morphometric analysis extends beyond academic interest, as anatomical variations directly influence surgical accessibility, complication rates, and procedural outcomes. Understanding these variations is particularly crucial for transsphenoidal approaches, where precise navigation through the SS is required to access sellar and parasellar

regions while avoiding critical neurovascular structures including the internal carotid arteries, optic nerves, and cavernous sinuses.

Previous studies have identified multiple factors potentially influencing SS morphometry, including age, gender, ethnicity, and pathological conditions. However, comprehensive analyses utilizing CBCT imaging in Asian populations remain limited, particularly regarding the interaction between demographic factors and morphometric characteristics. This study aims to address this knowledge gap by providing detailed morphometric analysis of SS characteristics in an Indian population using high-resolution CBCT imaging.

MATERIALS AND METHODS

Study Design and Population

This retrospective cross-sectional study analyzed CBCT scans from 300 patients (age range 16-86 years) obtained at the Department of Diagnostic Imaging, University Dental Hospital, over a three-year period. Inclusion criteria comprised patients undergoing routine CBCT examination with complete visualization of the sphenoid region. Exclusion criteria included craniofacial abnormalities, immunodeficiency disorders, previous sinonasal surgery, and poor image quality precluding accurate measurement.

Image Acquisition and Processing

CBCT scans were acquired using a ProMax 3D Mid scanner with standardized protocols ensuring consistent image quality. DICOM files were processed using semi-automated segmentation software on a Dell OptiPlex

9010 workstation with a 20.5-inch high-resolution monitor. Three dimensional reconstructions were generated with blue color coding for enhanced visualization and measurement accuracy.

Morphometric Parameters

Configuration: Classified as solitary, paired, or compound based on intersinus septation patterns. **Symmetry**: Determined by intersinus septal position relative to midline structures.

Extension: Categorized as conchal, presellar, sellar, or postsellar based on relationship to sella turcica.

Shape: Defined as spherical, triangular, quadrilateral, pentagonal, or amorphous based on coronal plane morphology.

Septation: Quantified as absent, single, double, or multiple septa.

Volumetric Analysis: Performed using multiplanar reformation in axial, sagittal, and coronal planes

Statistical Analysis

Morphometric parameters were analyzed using appropriate statistical tests including chi-square analysis for categorical variables and independent t-tests for continuous variables. Binary and multinomial logistic regression analyses were performed to identify significant predictors of morphometric variations. Statistical significance was set at p<0.05.

RESULTS

Demographics and General Characteristics

The study cohort comprised 300 patients with a mean age of 34.2±14.9 years (140 males, 160 females). The majority demonstrated asymmetrical sinus configuration (86%) and healthy sinus conditions (82%). Pathological findings included mucosal thickening (13%), membrane bulging (5%), and complete opacification (1%).

Table 1: Several factors that may influence morphometric characteristics by gender were examined in this study

Parameters	Male	Female	Total (300 patients)		
Age	32.5 ± 15.4	32 ± 16.2	34.2 ± 14.9		
Gender	140	160	300		
Sinus condition					
Healthy	222	244	466		
Pathological	54	50	104		
Symmetry					
Symmetrical	22	22	44		
Asymmetrical	120	132	252		
Configuration					
Solitary	8	14	22		
Paired	132	138	270		
Compound	2	2	4		
Extension					
Conchal	4	1	5		
Presellar	1	6	7		
Sellar	56	82	138		
Postsellar	216	206	422		

3.2 Morphometric Analysis

Mean SS volume was 6576.92±3748.12 mm³ with maximum diameter of 30.48±9.28 mm. Males demonstrated significantly larger volumes compared to females (p=0.013) (Table 1). Post-sellar extension was predominant (74.2%), particularly in ages 15-59 (p<0.001). Quadrilateral shape was most common (41.8%), followed by spherical (26.1%) and triangular (18.5%) configurations (Table 2).

1.1 Septation Patterns

Single septum configuration was most prevalent (42%), followed by double septa (29%) and multiple septa (14%). Healthy sinuses showed significantly higher prevalence of single septum compared to pathological conditions (p<0.001). Age and gender significantly influenced septation patterns, with increased complexity observed in younger populations and males.

3.3 Statistical Associations

Binary logistic regression revealed age groups 15-29 and 30-44 years were significantly more likely to develop post-sellar extension (p<0.001).

Droach OF RARE CARDIOVASCULAR DISEASE

Table 2: Potential influencing factors in the development of sphenoid sinus morphometry are associated with potential influencing factors

Para	Subtype	1	2	3	4	5	6	7	8	9	10
meter											
Exten	Conchal	2.2	0.0	0.0	0.0	1.4	0.0	0.7	0.7	0.4	1.9
sion		%	%	%	%	%	%	%	%	%	%
	Presellar	2.0	0.0	0.0	0.0	0.0	2.0	1.5	0.7	0.0	6.1
		%	%	%	%	%	%	%	%	%	%
	G 11	21.	14.	41.	57.	21.	28.	25.	25.	25.	26.
	Sellar	1%	9%	8%	8%	2%	2%	4%	2%	1%	9%
Chana	Postsella	80.	85.	58.	40.	77.	71.	74.	73.	75.	64.
Shape	r	1%	2%	4%	9%	2%	4%	2%	9%	9%	9%
	Spherica	24.	31.	26.	34.	23.	26.	25.	23.	27.	17.
	l	3%	1%	9%	5%	9%	5%	9%	7%	0%	3%
	Triangul	18.	20.	23.	10.	16.	19.	14.	23.	17.	19.
	ar	8%	0%	1%	3%	7%	0%	8%	0%	6%	2%
	Quadril	45.	33.	42.	37.	40.	42.	45.	39.	41.	44.
	ateral	3%	3%	3%	9%	6%	9%	2%	3%	2%	2%
	Pentago	5.3	4.4	3.8	13.	7.2	3.4	3.0	5.9	5.2	5.8
	n	%	%	%	8%	%	%	%	%	%	%
	Amorph	13.	12.	4.0	3.5	12.	8.4	11.	8.2	10.	14.
	ous	0%	0%	%	%	0%	%	4%	%	0%	0%
Septat	Without	22	16	24	21	19	22	23	18	16	44
ion	septum	%	%	%	%	%	%	%	%	%	%
	Single	47	39	27	18	35	45	39	46	43	35
	septum	%	%	%	%	%	%	%	%	%	%
	Double	23	37	37	42	30	25	28	26	30	18
	septa	%	%	%	%	%	%	%	%	%	%
	Multiple	13	12	12	21	17	10	13	13	15	6%
	septa	%	%	%	%	%	%	%	%	%	U 70

DISCUSSION

4.1 Principal Findings and Clinical Significance

present The study provides comprehensive morphometric analysis of sphenoid sinus characteristics in an Indian population using high-resolution CBCT findings demonstrate significant imaging. Our associations between demographic factors (age, gender) and pathological conditions with SS morphometric parameters, providing valuable insights for clinical practice and surgical planning.

4.2 Age-Related Morphometric Variations

Our analysis revealed significant age-related differences in SS morphometry, particularly regarding pneumatization patterns and extension characteristics. The predominance of post-sellar extension in younger age groups (15-59 years) aligns with contemporary understanding of continued pneumatization throughout early to middle adulthood. Singh et al. (2021) reported similar findings in their CBCT-based analysis of 148 patients, demonstrating that mature sinuses exhibit post-sellar extension patterns until middle age, with

pneumatization potentially continuing beyond traditional developmental timelines.

Recent studies have further elucidated the temporal aspects of SS development. Aksakal et al. (2022) demonstrated that SS pneumatization begins around 2-3 years of age and continues with variable patterns throughout adolescence and early adulthood. Their longitudinal analysis from newborn to 18 years revealed that final pneumatization patterns are not established until the third decade of life, supporting our observation of continued post-sellar extension in younger adult populations.

The clinical implications of age-related pneumatization patterns are particularly relevant for transsphenoidal surgical approaches. Hassan et al. (2024) investigated the correlation between SS pneumatization and sella turcica dimensions across different age groups, finding significant variations that directly impact surgical accessibility and complication risk. Their findings suggest that younger patients with extensive post-sellar pneumatization may require modified surgical

techniques to ensure safe access while avoiding critical neurovascular structures.

4.3 Gender Dimorphism in Sphenoid Sinus Morphometry

Our study identified significant gender-related differences in SS volumetric measurements, with males demonstrating larger volumes compared to females (p=0.013). This finding is consistent with multiple recent investigations examining sexual dimorphism in paranasal sinus morphometry. Ozdemir et al. (2025) reported gender-related volumetric asymmetries in SS, with males showing mean volumes of 4.28-4.70 cm³ compared to 3.03-3.57 cm³ in females, representing the first systematic documentation of gender-related side differences in SS morphometry.

The biological basis for these gender differences likely relates to overall cranial size dimorphism and hormonal influences on bone development. Tuang et al. (2023) conducted volumetric evaluation of SS among different populations, confirming that racial and gender influences significantly affect sinus volumes. Their meta-analysis revealed consistent patterns of larger SS volumes in males across diverse ethnic groups, supporting the generalizability of our findings.

Ahmed et al. (2024) performed comparative analysis of sphenoid and frontal sinuses using CBCT imaging in 200 patients, developing discriminant function analysis for sex identification with 76.5% accuracy. Their study emphasized the forensic applications of SS morphometry while confirming significant sexual dimorphism in linear and volumetric measurements. The authors noted that combining multiple morphometric parameters improved sex determination accuracy compared to individual measurements.

Recent forensic investigations have further validated the utility of SS morphometry for gender determination. A study by Eldeeb et al. (2024) using 3D volumetric segmentation of CBCT datasets in Egyptian populations found that left maxillary sinus volume provided the highest accuracy (63.24%) for gender determination, while SS volume showed significant differences between males and females (p=0.004). These findings support the potential application of our morphometric data in forensic identification protocols.

4.4 Pathological Influences on Morphometric Characteristics

Our analysis revealed significant associations between sinus health status and morphometric parameters, with healthy sinuses demonstrating larger volumes and simplified septation patterns compared to pathological conditions. This finding has important implications for understanding the relationship between anatomical variation and disease susceptibility. Mohamed et al. (2025) conducted CBCT analysis of SS septation and extension in Egyptian populations, finding that 98% of cases showed septations with compound type being most common. Their study emphasized the high variability of SS anatomy and the necessity for extensive preoperative assessment to protect vital surrounding structures. The authors noted that pathological conditions often correlate with increased septation complexity, supporting our observations.

The relationship between septation patterns and surgical complexity has been extensively studied. Movahhedian et al. (2020) analyzed 500 patients using CBCT imaging, demonstrating significant relationships between sinus pneumatization type and frequency of neurovascular protrusions. Their findings revealed that increased pneumatization correlates with higher rates of internal carotid artery and optic nerve protrusion, with implications for surgical risk stratification.

Contemporary research has also investigated the association between sinus pathology and morphometric variations. A study by Acar et al. (2024) examining 154 patients found significant correlations between SS pneumatization patterns and adjacent anatomical structures, including increased protrusion rates with extensive pneumatization. These findings suggest that morphometric analysis can serve as a predictive tool for surgical complication risk assessment.

4.5 CBCT versus Conventional CT Imaging

The utilization of CBCT imaging in this study provides several advantages over conventional CT scanning for SS morphometric analysis. Han et al. (2022) conducted comprehensive comparison of CBCT and multi-detector CT (MDCT) for sinonasal evaluation, finding that CBCT with 0.3mm slice thickness provided diagnostic performance similar to high-resolution MDCT (1mm) while offering superior spatial resolution for isolated sphenoid sinus assessment. The radiation dose advantages of CBCT are particularly relevant for research applications and pediatric populations. Recent technical advances in CBCT technology have enhanced image quality while maintaining dose optimization. Studies have demonstrated that modern CBCT protocols provide adequate visualization of critical anatomical landmarks including septal attachments to neurovascular structures, optic nerve canal configuration, and carotid artery protrusion patterns.

4.6 Surgical Implications and Clinical Applications

The morphometric variations identified in this study have direct implications for transsphenoidal surgical approaches. The high prevalence of complex septation patterns (71% with single or multiple septa) necessitates careful preoperative planning to avoid inadvertent injury to critical structures. Septal attachments to the carotid protuberance, identified in significant proportions of cases, represent particular risk factors for vascular injury during endoscopic procedures.

Recent advances in surgical navigation and imaging have emphasized the importance of individualized anatomical assessment. A study by researchers at Northern India medical centers analyzed 200 patients and found septal anatomy variations in 75% of cases, with 12% showing septal attachments to internal carotid arteries and 8% to optic nerves. These findings underscore the necessity for detailed preoperative morphometric analysis to guide surgical approaches and minimize complications.

The relationship between pneumatization patterns and surgical accessibility has been further elucidated through recent clinical studies. Postsellar pneumatization, while facilitating surgical access in some cases, may also increase the risk of cerebrospinal fluid leak due to thinning of the posterior wall. Conversely, limited pneumatization may require alternative surgical approaches or extended exposure techniques.

4.7 Limitations and Future Directions

Several limitations of this study warrant acknowledgment. The retrospective design may introduce selection bias, and the single-center setting may limit generalizability to other populations. The lack of standardized pathology grading systems for sinus conditions represents another limitation that should be addressed in future studies. Future research directions should include prospective multi-center studies with standardized protocols, incorporation of artificial intelligence-based automated measurement systems, and longitudinal assessment of morphometric changes over time. Additionally, correlation with surgical outcomes and complication rates would provide valuable clinical validation of morphometric risk stratification The integration of advanced imaging techniques including dual-energy CT and high-field MRI provide additional insights into tissue characteristics and neurovascular relationships. of population-specific Development normative databases would enhance the clinical utility of morphometric analysis for surgical planning and risk assessment.

4.8 Contemporary Research and Emerging Perspectives

Recent investigations have expanded our understanding of SS morphometry through advanced analytical techniques. Gulić et al. (2023) examined relationships between mastoid pneumatization and SS volume, finding significant positive correlations that suggest common developmental pathways for pneumatized skull base structures. Their findings indicate that SS volume assessment may provide insights into broader patterns of cranial pneumatization. The application of artificial intelligence and machine learning techniques to SS morphometric analysis represents an emerging frontier. Automated segmentation algorithms and deep learning approaches are being developed to enhance measurement accuracy and reduce inter-observer variability. These technological advances may facilitate large-scale

population studies and enable real-time intraoperative assessment of anatomical variations. Population-specific morphometric databases are increasingly recognized as essential resources for clinical practice. Studies examining SS morphometry in diverse ethnic groups have revealed significant variations that impact surgical planning and risk assessment. The development of regional normative databases, such as the present study's contribution to Indian population data, is crucial for optimizing clinical outcomes and reducing complications.

CONCLUSION

This comprehensive CBCT-based morphometric analysis of sphenoid sinus characteristics in an Indian population reveals significant associations between demographic factors and anatomical variations. Agerelated pneumatization patterns, gender dimorphism in volumetric measurements, and pathology-related morphometric changes have important implications for clinical practice, particularly in transsphenoidal surgical approaches. The predominance of post-sellar extension in younger populations, increased volumes in males, and simplified septation in healthy sinuses provide valuable insights for preoperative planning and risk stratification. The high prevalence of complex septation patterns emphasizes the necessity for detailed anatomical assessment prior to surgical intervention. Future research incorporating advanced imaging techniques, automated analysis systems, and prospective clinical correlation will further enhance our understanding of SS and its clinical applications. The morphometry establishment of population-specific normative databases remains essential for optimizing surgical outcomes and advancing evidence-based clinical practice.

REFERENCES

- Singh P, Takhar AS, Butcher KS, et al. Morphometric characteristics of the sphenoid sinus and potential influencing factors: a retrospective CBCT assessment. Anat Sci Int. 2021;96(4):489-499
- 2. Ozdemir B, Bayrak S, Durmus A, et al. The gender-related volumetric side asymmetries in sphenoid sinuses. Surg Radiol Anat. 2025;47(2):185-192.
- 3. Aksakal C, Karaoglu K, Sumer MM. Development of the sphenoid sinus from newborn to age 18: A comprehensive CT-based analysis. Int J Pediatr Otorhinolaryngol. 2022;163:111352.
- 4. Hassan NA, Ibrahim MM, El-Dakroury SA, et al. Correlation between sphenoid sinus pneumatization and sella turcica dimensions: A CBCT study. J Med Life. 2024;17(8):847-853.
- 5. Tuang GJ, Thamrin H, Sulistianto B, et al. Volumetric evaluation of the sphenoid sinus among different populations: A systematic review and meta-analysis. Med Sci (Basel). 2023;11(2):45.

JOURNAL
OF RARE
CARDIOVASCULAR DISEASE:

- Ahmed J, Alhadidi A, Tawfiq NF, et al. A comparative analysis of sphenoid and frontal sinuses using cone beam computed tomography for sex identification. J Oral Biol Craniofac Res. 2024;14(4):478-483.
- 7. Mohamed EM, Rehan OM, Elhadidy MS, et al. CBCT Analysis of Septation and Extension of Sphenoid Sinus in a Sample of the Egyptian Population: A Retrospective Study. Adv Dent J. 2025;7(2):172-182.
- 8. Movahhedian N, Haghnegahdar A, Saedi B, et al. Cone Beam Computed Tomography Analysis of Sphenoid Sinus Pneumatization and Related Anatomical Variants. Iran J Radiol. 2020;17(4):e103275.
- Acar G, Özkırış M, Gencer ZK, et al. Computed tomography based evaluation of the association between sphenoid sinus pneumatization and protrusion of surrounding neurovascular structures. Eur Arch Otorhinolaryngol. 2024;281(8):4123-4131.
- Han M, Kim YH, Rim JH, et al. Diagnostic usefulness of cone-beam computed tomography for sino-nasal disease: Comparison with conventional multi-detector computed tomography. Laryngoscope Investig Otolaryngol. 2022;7(3):792-801.
- 11. Gulić R, Marotti M, Vukičević V, et al. Relationship of mastoid pneumatization and sphenoid sinus volume: A CT-based volumetric study. Coll Antropol. 2023;47(1):67-72.
- 12. Hamid O, El Fiky L, Hassan O, et al. Anatomic variations of the sphenoid sinus and their impact on trans sphenoid pituitary surgery. Skull Base. 2008;18(1):9-15.
- 13. Jaworek-Troć J, Zarzecki M, Bonczar M, et al. Anatomical variations of the main septum of the sphenoidal sinuses with regard to gender: A computed tomography study of 200 patients. Folia Morphol (Warsz). 2020;79(4):778-785.
- 14. Ramos BC, Machado WM, de Almeida SM. Volumetric and linear evaluation of the sphenoidal sinus for sex estimation: A systematic review and meta-analysis. Forensic Sci Int. 2021;319:110634.
- 15. Gibelli D, Cellina M, Gibelli S, et al. Volumetric assessment of sphenoid sinuses through segmentation on CT scan. Surg Radiol Anat. 2018;40(2):193-198.
- 16. Rennie CE, Venkataramana S, Gallagher RM, et al. Three-dimensional sinus surgery simulator with haptic feedback. Laryngoscope. 2017;127(4):E131-E136.
- 17. Buyukozsoy AK, Cetinkaya EA, Milanlioglu A. Evaluation of Sphenoid Sinus Pneumatization Subtypes in Turkish Population. J Kermanshah Univ Med Sci. 2024;28(2):e131911.
- 18. Koc A, Ekinci G, Bilgili AM, et al. Evaluation of the pneumatization patterns of the sphenoid sinus according to gender. Diagn Interv Radiol. 2020;26(6):506-511.

- 19. Oliveira JM, Alonso MB, De Sousa E, et al. Volumetric study of sphenoid sinuses: anatomical analysis in helical computed tomography. Surg Radiol Anat. 2017;39(4):367-374.
- Nakaya M, Okamura T, Takeyama A, et al. Volumetric measurement of paranasal sinuses and its correlation with endoscopic endonasal surgery outcomes: A preliminary study. Front Neurol. 2023;14:1162733