Journal of Rare Cardiovascular Diseases

ISSN: 2299-3711 (Print) | e-ISSN: 2300-5505 (Online) www.jrcd.eu

RESEARCH ARTICLE

The Role of Nutritional Management in Enhancing Reconstructive Surgery Outcomes for Patients on Chronic Kidney Disease/Dialysis: A Systematic Review

Vaithiswaran Arikrishnan¹, Niranjan Raja², A. Aarthi³ and M.R. Suchitra⁴

- Assistant Professor, Department of plastic surgery, Sri Manakula Vinayakar Medical college and hospital Pondicherry, India.
- ²Associate Professor, Department of Nephrology, Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidyapeeth, Puducherry, India.
- ³Assistant Professor, Department of Nephrology, Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidyapeeth, Puducherry, India ⁴Assistant Professor, Department of chemistry and biosciences, SASTRA (SRC) deemed to be university, Kumbakonam India.

*Corresponding Author M.R. Suchitra (dietviji@yahoo.com)

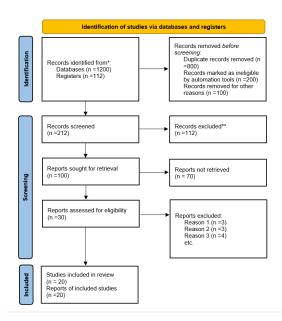
Article History
Received: 04/08/2025
Revised: 19/08/2025
Accepted: 09/09/2025
Published: 26/09/2025

Abstract: Cutan Background: Chronic kidney disease (CKD) patients who undergo plastic surgery are at greater risk of malnutrition and resultant wound-healing complications. Protein and micronutrient deficiencies hinder surgical performance since they play crucial roles in tissue repair and immune response. Objective: This systematic review will assess the contribution of nutritional management to better outcomes for reconstructive surgery in patients with CKD and dialysis patients through improvement in wound healing and post-surgical complications. Methods: We performed a systematic literature review across databases such as PubMed, Cochrane Library, and Scopus, applying the PICOS framework (Population, Intervention, Comparator, Outcome, and Study Design). Included studies were randomized controlled trials and observational studies that reported on nutritional deficits and surgical outcomes in patients with CKD. Results: Findings demonstrate that adequate nutritional care strongly improves surgical outcomes by reducing post-operative complications including infections, seromas, and compromised wound healing. Vitally important nutrients, including proteins (arginine, glutamine), and micronutrients (vitamins A, C, D, and zinc), are involved in these processes. Importantly, malnutrition increases vulnerability to complications, especially in the areas of surgical recovery and aesthetic procedures. Conclusions: Successful nutritional care measures, such as thorough dietary evaluations and tailored interventions, are essential to promote better surgical outcomes in patients with CKD. In plastic surgery, nutrition significantly affects healing, with adequate protein crucial for tissue repair and collagen synthesis. Amino acids like arginine and glutamine enhance recovery, while vitamins A, C, and D support skin integrity and infection prevention. Multidisciplinary collaborations between nephrologists, dietitians, and surgical teams are vital for translating these results into clinical practice, ultimately promoting improved patient outcomes in reconstructive surgery.

Keywords: Chronic Kidney Disease, Nutritional Management, Plastic Surgery, Wound Healing, Complications, Systematic Review.

INTRODUCTION

Patients undergoing reconstructive surgery often face complex clinical challenges, especially those with endstage renal disease (ESRD) who need dialysis. This group has a higher risk of complications after surgery due to poor nutrition and changes in the body caused by kidney diseases. Malnutrition, which is often seen in dialysis patients, can hinder wound healing, raise infection rates, and extend recovery times, leading to less-than-ideal surgical results. Thus, it is crucial to understand how to manage nutrition in the care of these patients before and after surgery. Nutritional support is key to improving the body's ability to heal and recover after surgery. In reconstructive surgery, where proper healing of cuts and grafts is essential, the role of adequate protein intake, micronutrient supplements, and overall energy balance is very important. Furthermore, the dietary restrictions that come with dialysis, such as limits on potassium, phosphorus, and sodium, create additional challenges to achieving good nutrition. This systematic review seeks to bring together existing studies on how nutritional management strategies affect the outcomes of reconstructive surgeries in patients on dialysis.¹⁻⁴ By looking at the connection between nutrition and surgical


success, this review will point out important actions that could reduce the risks linked to malnutrition and enhance the quality of life for this vulnerable group. As healthcare providers increasingly recognize the need for a team approach in caring for these patients, understanding how nutrition, dialysis, and reconstructive surgery interact will be vital for creating effective treatment plans that improve health outcomes and support healing.

METHODOLOGY

- 1. Research Design and Framework: This systematic review will adhere to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, thus providing a completely transparent approach and also ensuring the reproducibility of the results. The role of nutritional management in the improvement of surgical outcomes for patients on dialysis undergoing reconstructive surgery will be evaluated in this review.
- 2. PICOS Framework: The study's inclusion and exclusion parameters according to the PICOS framework ⁵are defined by the following criteria: Population (P): Patients suffering from any condition that requires

reconstructive surgery and are on dialysis /CKD (hemodialysis, peritoneal dialysis, and kidney transplant recipients are included). Intervention (I): Different kinds of nutritional management such as dietary modifications, nutritional supplementation, and nutritional education before and/or after surgery are all included. Comparator (C): There will be control groups that will receive standard care without any specialized nutritional interventions, and comparisons will be made accordingly. Outcome (O): The main outcomes will be surgical complications (infection rates, wound healing), recovery times, and overall postoperative outcomes. In addition, quality of life assessments and nutritional status evaluations can be counted as secondary outcomes. Study Design (S): Randomized controlled trials, cohort studies, case-control studies, case series and suitable observational studies will be accepted.

- 3. Literature Search Strategy: A literature search with a wide coverage will be performed in the electronic databases like PubMed, Cochrane Library, Scopus, Web of Science, and Embase. The search strategy will incorporate a mix of keyword and Medical Subject Headings (MeSH) terms that are concerned with nutrition, dialysis, and reconstructive surgery. Search terms like "nutrition," "dialysis," "reconstructive surgeons" plastic, chronic kidney disease, healing, infection will be some of the examples used in the search.
- 4. Selection Process: The selection of articles will be a two-stage process handled by two different reviewers who will independently analyze the titles and abstracts according to pre-set criteria for inclusion and exclusion. Then the full-text articles will be reviewed in order to decide whether they are eligible or not. Any conflict that arises between the reviewers will be settled either through discussion or by calling in a third reviewer to decide.
- 5. Data Extraction and Quality Assessment: Data will be taken from all studies that are accepted, with concern about study types, people taking part, measures taken, results, and main points. Each study will be evaluated for its quality through the use of pertinent tools like the Cochrane Risk of Bias Tool for RCTs and Newcastle-Ottawa Scale for non-randomized studies.
- 6. Data Synthesis: The data drawn from the eligible studies will undergo both qualitative and, if possible, quantitative synthesis via meta-analysis. Suitable software will be used for the statistical operations, and the degree of variability among the different studies will be measured. The methodology used in this review is expected to yield a strong examination of the contribution made by nutritional management in the surgical outcome enhancement of the patients on dialysis and undergoing reconstructive surgery. (See figure 1) Figure 1 showing the PRISMA statement

Zinc, Kidney disease and wound healing

Patients with chronic kidney disease (CKD) are at risk for zinc deficiency, which is linked to erythropoiesis-stimulating agent (ESA) hyporesponsive anemia, nutritional issues, cardiovascular disease, and non-specific symptoms such as dermatitis, prolonged wound healing, taste disturbance, appetite loss, or cognitive decline.⁶ Thus, zinc supplementation may be beneficial in the treatment of zinc insufficiency, but it frequently induces copper deficiency, which is characterized by a variety of severe illnesses such as cytopenia and myelopathy.

Nutritional Deficiencies in Chronic Kidney Disease (CKD) and Dialysis

Chronic kidney disease (CKD) is a progressive condition characterized by the gradual loss of kidney function, leading to alterations in the body's ability to maintain homeostasis. Patients with CKD often face a variety of nutritional challenges, which can significantly affect their health and quality of life. ⁷⁻¹²As kidney function declines, the ability to eliminate waste products and regulate various metabolic processes deteriorates, leading to nutritional deficiencies that can arise from both dietary restrictions and the body's impaired ability to utilize nutrients effectively. This is particularly concerning for patients on dialysis, who are subject to additional metabolic stressors.

Common Nutritional Deficiencies

1. Protein:

Protein intake is one of the most critical aspects of nutrition in CKD patients, particularly those on dialysis. Though protein is essential for maintaining muscle mass, immune function, and overall health, patients on dialysis require careful management of protein intake. Many are advised to follow a restricted protein diet to reduce the buildup of nitrogenous waste products. However, this can lead to protein-energy wasting (PEW), a condition characterized by muscle loss and malnutrition. Patients

on hemodialysis often need increased protein as they lose amino acids through the dialysis process, while those on peritoneal dialysis may require tailored protein ingestion due to higher protein losses in the dialysis fluid.

2. Caloric Intake:

Malnutrition, commonly seen in CKD patients, can be partly attributed to inadequate caloric intake. Patients often experience decreased appetite, fatigue, and dietary restrictions imposed by the management of their disease (such as limitations on sodium, phosphorus, and potassium). This situation can lead to unintentional weight loss and muscle wasting. Adequate caloric intake is crucial to meet energy requirements and prevent protein catabolism, making it essential to identify palatable and nutrient-dense food options for these patients.

3. Vitamins and Minerals:

Various micronutrient deficiencies are prevalent in CKD patients, primarily due to dietary restrictions and the physiological changes associated with reduced kidney function. Key deficiencies include:

Vitamin D: The kidneys play a vital role in converting vitamin D into its active form, calcitriol. Patients with CKD often develop hypovitaminosis D, leading to impaired calcium metabolism, bone disease, and increased cardiovascular risk. Supplementation of vitamin D is essential, particularly for those on dialysis, to support bone health and mitigate secondary hyperparathyroidism.

Vitamin B Complex: Vitamins such as B1 (thiamine), B6 (pyridoxine), and B12 (cobalamin) may be deficient due to dietary limitations and losses during dialysis procedures. These vitamins play crucial roles in energy metabolism and red blood cell production. B vitamin deficiencies can lead to anemia, neuropathy, and overall poor health status.

Folic Acid: Folic acid deficiency is common in CKD patients and can exacerbate anemia, impacting the overall quality of life. Dietary restrictions often limit the intake of folate-rich foods, necessitating supplementation to maintain optimal levels.

Iron: Anemia is a common complication in CKD, often arising from erythropoietin deficiency, chronic inflammation, and nutritional deficiencies. Patients on dialysis may experience iron deficiency due to blood loss during treatments and dietary restrictions. Iron supplementation becomes crucial to manage anemia effectively.

4. Electrolytes:

Patients with CKD may experience imbalances in electrolyte levels due to impaired renal function. In particular, potassium and phosphorus often become elevated in CKD, necessitating dietary restrictions to prevent complications like hyperkalemia (high potassium levels) and hyperphosphatemia (high

phosphorus levels). However, these restrictions can contribute to deficiencies in these essential minerals.

Potassium: While it is critical to manage potassium intake to prevent dangerous levels from building up in the bloodstream, some patients may avoid potassium-rich foods excessively, leading to deficiencies that can impact heart and muscle function.

Phosphorus: Similar to potassium, phosphorus must be monitored closely. Low phosphorus may occur if dietary sources are overly restricted, impairing bone health.

Implications and Management

The nutritional deficiencies associated with CKD and dialysis can have profound implications for patient health, including diminished muscle strength, impaired immune function, increased risk of cardiovascular issues, and lower quality of life. The impact on wound healing in patients with grafts are not good

To manage these deficiencies effectively, a multidisciplinary approach is crucial that includes nephrologists, dietitians, and healthcare providers focused on individualized nutritional assessments and interventions tailored to each patient's needs. Nutritional screening tools and assessments should be routinely employed to identify at-risk patients, enabling timely interventions that may include dietary modifications, supplementation of vitamins and minerals, and specialized meal planning.

Dietitians can play a vital role in educating patients about appropriate dietary choices, emphasizing nutrient-dense foods that meet their specific needs while respecting any restrictions they might face. 7-12 Collaborative care can improve patient adherence to dietary recommendations, subsequently enhancing nutritional status and overall health outcomes.

Furthermore, regular monitoring of laboratory parameters, including protein levels, nutrient status, and inflammatory markers, can help guide clinical decisions and ensure optimal management of nutritional deficiencies in CKD patients.

Link between Nutritional Status and aesthetic surgical Complications

Nutritional status is a critical yet often overlooked component of surgical care, particularly for patients undergoing aesthetic and reconstructive procedures. The complex relationship between nutrition and surgical outcomes is particularly pronounced in patients with adverse nutritional profiles, such as those who are malnourished, obese, or suffer from various debilitating conditions. The impact of nutritional deficiencies can manifest in several ways, contributing to complications such as granulomas, hypertrophic scars, seromas, infections, and other poor surgical outcomes.

Understanding these links is essential for optimizing care and improving patient outcomes.

Granulomas

Granulomas are localized inflammatory responses that may occur as a reaction to foreign bodies, including fillers used in aesthetic procedures. Histologically, granulomas are characterized by a central region of macrophages surrounded by lymphocytes and fibroblasts. The presence of epithelioid macrophages and multinucleated giant cells, along with collagen fibers, is a hallmark of this condition. The innate immune system drives this inflammation, leading to granuloma formation.

Malnutrition adversely influences immune responses, particularly by decreasing T cell functionality and impairing the production of cytokines and antibodies. Studies indicate that malnutrition can be associated with granuloma development in patients suffering from inflammatory bowel diseases. In this context, nutritional status emerges as a crucial factor determining the likelihood of granuloma formation. Hence, optimizing nutrition through dietary interventions may help decrease the risk of developing such complications during aesthetic procedures.

Hypertrophic Scars and Keloids

Hypertrophic scars and keloids result from chronic inflammation and excessive collagen production in the reticular dermis. The pathophysiology includes factors like angiogenesis, fibroblast proliferation, and unregulated collagen synthesis. Certain demographics, including women, individuals with a family history of keloids, and those exposed to estrogen, are at an amplified risk for these types of scars.

Diet plays a significant role in skin healing and integrity. Research has shown that imbalanced diets, particularly those high in processed foods and low in essential nutrients, can negatively affect skin health. For example, diets rich in hot and spicy foods can exacerbate inflammation after surgical procedures, while excessive alcohol consumption can lead to oxidative stress, damaging skin components like elastin and collagen. Low intake of fruits and vegetables can result in deficiencies in vitamins and minerals critical for skin health, potentially contributing to complications in healing.¹⁴

Furthermore, studies indicate that individuals with poor dietary habits or specific conditions (such as obesity or a sedentary lifestyle) may be more prone to developing hypertrophic scars and keloids following surgical interventions. ¹⁵Therefore, preoperative nutritional counseling should include strategies for a balanced diet rich in antioxidants and essential nutrients to mitigate these risks.

Seroma

Seromas are fluid collections that can occur after procedures like abdominoplasty, with incidence rates ranging from 5% to 30%. This complication is especially concerning given that seromas may persist for extended periods, complicating recovery. The underlying mechanism involves extensive dissection of soft tissue that disrupts lymphatic and vascular structures, leading to fluid accumulation in the newly created dead spaces.

Several risk factors contribute to seroma formation, with body mass index (BMI) and abdominal muscle integrity being among the most significant. Patients with higher BMI or weakened abdominal walls are more likely to experience this complication. Importantly, patients with low serum protein and albumin levels are also at increased risk for seromas. These proteins help maintain oncotic pressure and proper fluid balance in the interstitial space; their deficiency can exacerbate fluid shifts and predispose patients to seroma formation. ¹⁵

Postoperatively, nutritional interventions focusing on protein and albumin levels should be prioritized to minimize the risk of seroma development. ¹⁶⁻¹⁷Clinicians must consider the role of nutritional support in preventing such complications when planning surgical interventions.

Infections

Both underweight and obesity significantly increase the risk of postoperative infections in a U-shaped manner. Patients with a normal weight tend to have the lowest infection rates. In the context of surgical procedures, infections can lead to prolonged recovery times, increased healthcare costs, and even mortality. This risk is particularly acute in obese patients, where studies indicate that up to one-third of fatal surgical complications occur in individuals with obesity.

Obesity contributes to higher rates of postoperative wound infections, with some studies suggesting a 1.7 times greater risk compared to non-obese individuals. Factors such as impaired oxygenation and blood circulation, as well as dysregulation of the immune response, can all play a role in increased infection rates. Furthermore, patients suffering from eating disorders, such as anorexia nervosa, may also experience significant physiological derangements, leading to heightened susceptibility to infections.

Given these associations, it is critical for healthcare providers to perform thorough nutritional assessments during preoperative evaluations. Identifying patients at risk for malnutrition or obesity and implementing appropriate interventions can significantly diminish the risk of postoperative infections.

Xerosis and Other Skin Manifestations

Xerosis, hyperpigmentation, and other dermal manifestations can be linked to poor nutritional status and the physiological consequences of malnutrition.

These symptoms may reflect deficiencies in vitamins and minerals that are essential for maintaining skin health and optimal healing. Nutritional deficiencies can frequently stem from conditions such as starvation, excessive vomiting, or even the misuse of laxatives and diuretics often associated with eating disorders.

Additionally, sarcopenia, characterized by the loss of muscle mass and strength, is associated with frailty and poor outcomes in both surgical and non-surgical patients. The relationship between nutrition and sarcopenia underscores the importance of preventing malnutrition through proactive dietary strategies, especially in patients preparing for surgical interventions.

Promoting adequate nutritional intake should be viewed as a fundamental component of both preoperative and postoperative care. ¹⁸⁻¹⁹Nutritional screening and assessment procedures are essential for determining individuals at risk for malnutrition and implementing timely interventions to enhance surgical outcomes.

Key Nutrients for Individuals Undergoing Aesthetic Procedures²⁰⁻²³

The nutritional status of patients undergoing aesthetic procedures is significantly influenced by specific nutrient intake. Adequate nutrition not only supports overall health but also improves surgical outcomes. Early coordinated efforts involving surgical and dietary departments can optimize pre-surgical nutritional care, leading to better results.

Protein

Protein intake is vital for providing essential amino acids necessary for various physiological processes, including muscle maintenance and skin health. Adequate protein consumption helps prevent the activation of muscle catabolism during the perioperative period.

Protein is indispensable for wound healing; specific amino acids like arginine and glutamine have been shown to enhance recovery. Arginine plays a key role in collagen synthesis and inflammatory responses, while glutamine assists in metabolic and immune functions. Insufficient protein levels can hinder wound healing, prolong recovery, and result in complications.

Studies indicate that protein supplementation can significantly reduce the incidence of complications following surgical procedures, highlighting the necessity of dietary assessment to ensure adequate protein intake prior to surgery.

Omega-3 Fatty Acids

Omega-3 fatty acids, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are known for their anti-inflammatory properties and role in wound healing. These polyunsaturated fatty acids help modulate local inflammation, promoting faster healing.

Research has indicated that diets rich in omega-3 fatty acids may lead to improved surgical recovery and wound healing, suggesting their inclusion in preoperative dietary planning could be beneficial for patients undergoing aesthetic procedures.

Micronutrients

Adequate intake of micronutrients is essential for optimal physiological functioning and improved surgical outcomes. Key vitamins and minerals play specific roles in wound healing and skin integrity:

- Vitamin A: Essential for skin health and cellular differentiation, it promotes collagen synthesis and immune responses in wound healing.
- Vitamin D: Plays a critical role in the immune system and may reduce infection risk. Its deficiency is particularly concerning for surgical patients.
- Vitamin C: Vital for collagen production and has antioxidant properties that help reduce oxidative stress during the healing process.
- **Vitamin E:** Acts as an important antioxidant, protecting against oxidative stress and playing a role in the inflammation response.
- **Zinc:** Essential for DNA synthesis and immune function, zinc is crucial for wound healing and collagen synthesis.

Adequate dietary intake of these vitamins and minerals can significantly contribute to reducing postoperative complications and improving surgical outcomes.

Link between Nutritional Status and Complications in plastic surgery Nutritional status is a critical yet often overlooked component of surgical care, particularly for patients undergoing aesthetic and reconstructive procedures. The complex relationship between nutrition and surgical outcomes is particularly pronounced in patients with adverse nutritional profiles, such as those who are malnourished, obese, or suffer from various debilitating conditions. The impact of nutritional deficiencies can manifest in several ways, contributing to complications such as granulomas, hypertrophic scars, seromas, infections, and other poor surgical outcomes. Understanding these links is essential for optimizing care improving patient outcomes. Granulomas Granulomas are localized inflammatory responses that may occur as a reaction to foreign bodies, including fillers used in aesthetic procedures. Histologically, granulomas are characterized by a central region of lymphocytes macrophages surrounded by fibroblasts.. Malnutrition adversely influences immune responses, particularly by decreasing T cell functionality and impairing the production of cytokines and antibodies. Studies indicate that malnutrition can be associated with granuloma development in patients suffering from inflammatory bowel diseases. In this context, nutritional status emerges as a crucial factor determining the likelihood of granuloma formation.

Hypertrophic Scars and Keloids Hypertrophic scars and keloids result from chronic inflammation and excessive collagen production in the reticular dermis. The pathophysiology includes factors like angiogenesis, fibroblast proliferation, and unregulated collagen synthesis. Certain demographics, including women, individuals with a family history of keloids, and those exposed to estrogen, are at an amplified risk for these types of scars. Diet plays a significant role in skin healing and integrity. For example, diets rich in hot and spicy foods can exacerbate inflammation after surgical procedures, while excessive alcohol consumption can lead to oxidative stress, damaging skin components like elastin and collagen. Low intake of fruits and vegetables can result in deficiencies in vitamins and minerals critical for skin health, potentially contributing to complications in healing. Furthermore, studies indicate that individuals with poor dietary habits or specific conditions (such as obesity or a sedentary lifestyle) may be more prone to developing hypertrophic scars and keloids following interventions. surgical Therefore, preoperative nutritional counselling should include strategies for a balanced diet rich in antioxidants and essential nutrients to decrease these risks. Seroma Seromas are fluid collections that can occur after procedures like abdominoplasty, with incidence rates ranging from 5% to 30%. Several risk factors contribute to seroma formation, with body mass index (BMI) and abdominal muscle integrity being among the most significant. Patients with higher BMI or weakened abdominal walls are more likely to experience this complication. Importantly, patients with low serum protein and albumin levels are also at increased risk for seromas. These proteins help maintain oncotic pressure and proper fluid balance in the interstitial space: their deficiency can exacerbate fluid shifts and predispose patients to seroma formation. Postoperatively, nutritional interventions focusing on protein and albumin levels should be prioritized to minimize the risk of seroma development. Clinicians must consider the role of nutritional support in preventing such complications when planning surgical interventions. Infections. In the context of surgical procedures, infections can lead to prolonged recovery times, increased healthcare costs, and even mortality. This risk is particularly acute in obese patients, where studies indicate that up to one-third of fatal surgical complications occur in individuals with obesity. Obesity contributes to higher rates of postoperative wound infections, with some studies suggesting a 1.7 times greater risk compared to non-obese individuals. Factors such as impaired oxygenation and blood circulation, as well as dysregulation of the immune response, can all play a role in increased infection rates. Furthermore, patients suffering from eating disorders, such as anorexia nervosa, may also experience significant physiological derangements, leading to heightened susceptibility to infections. Given these associations, it is critical for healthcare providers to perform thorough nutritional assessments during preoperative evaluations. Identifying patients at risk for malnutrition or obesity and

implementing appropriate interventions can significantly diminish the risk of postoperative infections. Xerosis Other Skin Manifestations Xerosis. hyperpigmentation, and other dermal manifestations can be linked to poor nutritional status and the physiological consequences of malnutrition. These symptoms may reflect deficiencies in vitamins and minerals that are essential for maintaining skin health and optimal healing. Nutritional deficiencies can frequently stem from conditions such as starvation, excessive vomiting, or even the misuse of laxatives and diuretics often with eating associated disorders. Additionally. sarcopenia, characterized by the loss of muscle mass and strength, is associated with frailty and poor outcomes in both surgical and non-surgical patients. The relationship between nutrition and sarcopenia underscores the importance of preventing malnutrition through proactive dietary strategies, especially in patients preparing for surgical interventions. These are called prehabilitation.

Synthesis of Key Nutrients for Individuals Undergoing Aesthetic Procedures The nutritional status of patients undergoing aesthetic procedures is significantly influenced by specific nutrient intake. Adequate nutrition not only supports overall health but also improves surgical outcomes. Early coordinated efforts involving surgical and dietary departments can optimize pre-surgical nutritional care, leading to better results. **Protein** Protein intake is vital for providing essential amino acids necessary for various physiological processes, including muscle maintenance and skin health. Adequate protein consumption helps prevent the activation of muscle catabolism during the perioperative period. Protein is indispensable for wound healing; specific amino acids like arginine and glutamine have been shown to enhance recovery. Arginine plays a key role in collagen synthesis and inflammatory responses, while glutamine assists in metabolic and immune functions. Insufficient protein levels can hinder wound healing, prolong recovery, and result in complications. Studies indicate that protein supplementation can significantly reduce the incidence of complications following surgical procedures, highlighting the necessity of dietary assessment to ensure adequate protein intake prior to surgery. Omega-3 Fatty Acids Omega-3 fatty acids, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are known for their antiinflammatory properties and role in wound healing. These polyunsaturated fatty acids help modulate local inflammation, promoting faster healing. Research has indicated that diets rich in omega-3 fatty acids may lead to improved surgical recovery and wound healing, suggesting their inclusion in preoperative dietary planning could be beneficial for patients undergoing aesthetic procedures. Micronutrients Adequate intake of micronutrients is essential for optimal physiological functioning and improved surgical outcomes. Key vitamins and minerals play specific roles in wound healing and skin integrity:

- Vitamin A: Essential for skin health and cellular differentiation, it promotes collagen synthesis and immune responses in wound healing.
- Vitamin D: Plays a critical role in the immune system and may reduce infection risk. Its deficiency is particularly concerning for surgical patients.
- **Vitamin C:** Vital for collagen production and has antioxidant properties that help reduce oxidative stress during the healing process.
- **Vitamin E:** Acts as an important antioxidant, protecting against oxidative stress and playing a role in the inflammation response.
- Zinc: Essential for DNA synthesis and immune function, zinc is crucial for wound healing and collagen synthesis.

Adequate dietary intake of these vitamins and minerals can significantly contribute to reducing postoperative complications and improving surgical outcomes.

Nutritional Deficiencies in Chronic Kidney Disease (CKD) and Dialysis: Chronic kidney disease (CKD) is a progressive condition characterized by the gradual loss of kidney function, leading to alterations in the body's ability to maintain homeostasis. Patients with CKD often face a variety of nutritional challenges, which can significantly affect their health and quality of life. As kidney function declines, the ability to eliminate waste products and regulate various metabolic processes deteriorates, leading to nutritional deficiencies that can arise from both dietary restrictions and the body's impaired ability to utilize nutrients effectively. This is particularly concerning for patients on dialysis, who are subject to additional metabolic stressors. Common Nutritional Deficiencies

Protein: Protein intake is one of the most critical aspects of nutrition in CKD patients, particularly those on dialysis. Though protein is essential for maintaining muscle mass, immune function, and overall health, patients on dialysis require careful management of protein intake. Many are advised to follow a restricted protein diet to reduce the buildup of nitrogenous waste products. However, this can lead to protein-energy wasting (PEW), a condition characterized by muscle loss and malnutrition. Patients on hemodialysis often need increased protein as they lose amino acids through the dialysis process, while those on peritoneal dialysis may require tailored protein ingestion due to higher protein losses in the dialysis fluid. 2. Caloric Intake: Malnutrition, commonly seen in CKD patients, can be partly attributed to inadequate caloric intake. Patients often experience decreased appetite, fatigue, and dietary restrictions imposed by the management of their disease (such as limitations on sodium, phosphorus, and potassium). This situation can lead to unintentional weight loss and muscle wasting. Adequate caloric intake is crucial to meet energy requirements and prevent protein catabolism, making it essential to identify palatable and nutrient-dense food options for these patients. Vitamins and **Minerals:** Various micronutrient deficiencies are prevalent in CKD patients, primarily due to dietary restrictions and the physiological changes associated with reduced kidney function. Key deficiencies include: 3. Vitamin D: The kidneys play a vital role in converting vitamin D into its active form, calcitriol. with CKD Patients often hypovitaminosis D, leading to impaired calcium metabolism, bone disease, and increased cardiovascular risk. Supplementation of vitamin D is essential, particularly for those on dialysis, to support bone health and mitigate secondary hyperparathyroidism. Vitamin B Complex: Vitamins such as B1 (thiamine), B6 (pyridoxine), and B12 (cobalamin) may be deficient due to dietary limitations and losses during dialysis procedures. These vitamins play crucial roles in energy metabolism and red blood cell production. B vitamin deficiencies can lead to anemia, neuropathy, and overall poor health status. Folic Acid: Folic acid deficiency is common in CKD patients and can exacerbate anemia, impacting the overall quality of life. Dietary restrictions often limit the intake of folate-rich foods, necessitating supplementation to maintain optimal levels. Iron: Anemia is a common complication in CKD, often arising from erythropoietin deficiency, chronic inflammation, and nutritional deficiencies. Patients on dialysis may experience iron deficiency due to blood loss during treatments and dietary restrictions. Iron supplementation becomes crucial to manage anemia effectively. Electrolytes: Patients with CKD may experience imbalances in electrolyte levels due to impaired renal function. In particular, potassium and phosphorus often become elevated in CKD, necessitating dietary restrictions to prevent complications like hyperkalemia (high potassium levels) and hyperphosphatemia (high phosphorus levels). However, these restrictions can contribute to deficiencies in these essential minerals. 4. Potassium: While it is critical to manage potassium intake to prevent dangerous levels from building up in the bloodstream, some patients may avoid potassiumrich foods excessively, leading to deficiencies that can impact heart and muscle function. Phosphorus: Similar to potassium, phosphorus must be monitored closely. Low phosphorus may occur if dietary sources are overly restricted, impairing bone health.

Implications and Management The nutritional deficiencies associated with CKD and dialysis can have profound implications for patient health, including diminished muscle strength, impaired immune function, increased risk of cardiovascular issues, and lower quality of life. To manage these deficiencies effectively, a multidisciplinary approach is crucial that includes nephrologists, dietitians, and healthcare providers focused on individualized nutritional assessments and interventions tailored to each patient's needs. Nutritional screening tools and assessments should be routinely employed to identify at-risk patients, enabling timely

interventions that may include dietary modifications, supplementation of vitamins and minerals, and specialized meal planning. Dietitians can play a vital role in educating patients about appropriate dietary choices, emphasizing nutrient-dense foods that meet their specific needs while respecting any restrictions they might face. Collaborative care can improve patient adherence to dietary recommendations, subsequently enhancing nutritional status and overall health outcomes. Furthermore, regular monitoring of laboratory parameters, including protein levels, nutrient status, and inflammatory markers, can help guide clinical decisions and ensure optimal management of nutritional deficiencies in CKD patients, combine nutrition and CKD with nutrition wound healing in plastic surgery

Synthesizing and Combining Nutritional Management in Chronic Kidney Disease and Plastic Surgery for Improved Wound Healing

Nutritional status is of utmost importance in chronic kidney disease (CKD) and in surgical results, especially in plastic surgery. CKD patients typically have severe nutritional deficiencies because of dietary limitation and deranged metabolism of nutrients, resulting in proteinenergy wasting, vitamin deficits, and electrolyte disturbances. These nutritional factors can compromise healing of wounds and render patients more susceptible to post-operative complications.

Within plastic surgery, the healing process is significantly impacted by nutrition and requires adequate protein for tissue repair and collagen synthesis. Certain amino acids such as arginine and glutamine are vital in maximizing recovery and immune response, while micronutrients including vitamins A, C, and D are important in ensuring skin integrity and minimizing infection risk. CKD patients, subjected to dietary restrictions and dramatic losses during dialysis, especially need individualized nutritional approaches that can reverse deficiencies and maximize healing outcomes.

In addition, the inflammatory reaction caused by malnutrition may enhance the risk of complications such as infections, seromas, and hypertrophic scars. Therefore, initial nutritional screening by a multidisciplinary team of nephrologists and dietitians is essential in preparing for CKD management as well as surgical procedures. ²⁰⁻²⁶

By instituting stringent nutritional protocols—such as ensuring proper protein, caloric needs, and essential micronutrients—clinicians can significantly improve wound healing, reduce the risk of surgical complications, and enhance overall patient outcomes in plastic surgery. Not only does this thorough regimen benefit patients' health and recovery, but it also underscores the critical relationship between nutrition, kidney health, and successful surgery.

CONCLUSION:

In conclusion, effective nutritional management is crucial for enhancing surgical outcomes in patients with chronic kidney disease (CKD) undergoing plastic surgery. In plastic surgery, nutrition significantly impacts the healing process, with adequate protein essential for tissue repair and collagen synthesis. Key amino acids like arginine and glutamine are crucial for enhancing recovery and immune response, while micronutrients such as vitamins A, C, and D help ensure skin integrity and reduce infection risk. CKD patients, who face dietary restrictions and losses during dialysis, particularly require tailored nutritional strategies to address deficiencies and improve healing outcomes. Furthermore, malnutrition increases the risk of complications like infections and seromas, making initial nutritional screening by nephrologists and dietitians vital for effective CKD management and surgical preparation. All the authors have contributed significantly to the draft

There is no conflict of interest There are no ethical issues

REFERENCES:

- 1. Jung CW, Bae YC. Perioperative management of facial reconstruction surgery in patients with end-stage renal disease undergoing dialysis. Arch Craniofac Surg. 2024 Apr;25(2):71-76. doi: 10.7181/acfs.2024.00045.
- Seth I, Lim B, Cevik J, Gracias D, Chua M, Kenney PS, Rozen WM, Cuomo R. Impact of nutrition on skin wound healing and aesthetic outcomes: A comprehensive narrative review. JPRAS Open. 2024 Jan 23;39:291-302. doi: 10.1016/j.jpra.2024.01.006
- Almadani Y.H., Vorstenbosch J., Davison P.G., Murphy A.M. Wound healing: A comprehensive review. Semin Plast Surg. 2021;35:141–144. doi: 10.1055/s-0041-1731791.
- 4. Stechmiller J.K. Understanding the role of nutrition and wound healing. Nutr Clin Pract. 2010;25:61–68. doi: 10.1177/0884533609358997.
- Amir-Behghadami M, Janati APopulation, Intervention, Comparison, Outcomes and Study (PICOS) design as a framework to formulate eligibility criteria in systematic reviews Emergency Medicine Journal 2020;37:387.
- Fukasawa, H.; Furuya, R.; Kaneko, M.; Nakagami, D.; Ishino, Y.; Kitamoto, S.; Omata, K.; Yasuda, H. Clinical Significance of Trace Element Zinc in Patients with Chronic Kidney Disease. J. Clin. Med. 2023, 12, 1667. https://doi.org/10.3390/jcm12041667.
- 7. Manrique OJ, Ciudad P, Sharaf B, Martinez-Jorge J, Moran S, Mardini S, et al. Free tissue transfers for head and neck reconstruction in patients with end-stage renal disease on

JOURNAL
OF RARE
CARDIOVASCULAR DISEASES

- dialysis: analysis of outcomes using the Taiwan national health insurance research database. J Reconstr Microsurg. 2017;33:587–91. doi: 10.1055/s-0037-1603739.
- 8. Iorember FM. Malnutrition in Chronic Kidney Disease. Front Pediatr. 2018 Jun 20;6:161. doi: 10.3389/fped.2018.00161
- Hanne Skou Jørgensen, Marc Vervloet, Etienne Cavalier, Justine Bacchetta, Martin H de Borst, Jordi Bover, Mario Cozzolino, Ana Carina Ferreira, Ditte Hansen, Markus Herrmann, Renate de Jongh, Sandro Mazzaferro, Mandy Wan, Rukshana Shroff, Pieter Evenepoel, on behalf of the European Renal Osteodystrophy (EUROD) initiative under the Chronic Kidnev Disease-Mineral and Bone Disorder working group of the European Renal Association (ERA) and the Dialysis and Chronic Kidney Disease-Mineral and Bone disorder working groups of the European Society of Paediatric Nephrology (ESPN), The role of nutritional vitamin D in chronic kidney disease-mineral and bone disorder in children and adults with chronic kidney disease, on dialysis, and after kidney transplantation—a European consensus statement, Nephrology Dialysis Transplantation, Volume 40, Issue 4, April 2025, 797-Pages 822, https://doi.org/10.1093/ndt/gfae293
- 10. J-DAVID Investigators, Shoji T, Inaba M, Fukagawa M et al. Effect of oral alfacalcidol on clinical outcomes in patients without secondary hyperparathyroidism receiving maintenance hemodialysis: the J-DAVID randomized clinical trial. JAMA 2018;320:2325–34.
- 11. Hendriks FK, Kooman JP, van Loon LJC. Dietary protein interventions to improve nutritional status in end-stage renal disease patients undergoing hemodialysis. Curr Opin Clin Nutr Metab Care. 2021 Jan;24(1):79-87. doi: 10.1097/MCO.00000000000000703.
- 12. Sabatino A, Piotti G, Cosola C, et al. Dietary protein and nutritional supplements in conventional hemodialysis. Semin Dial 2018; 31:583–591.
- Carlos-Fabuel L, Marzal-Gamarra C, Martí-Álamo S, Mancheño-Franch A. Foreign body granulomatous reactions to cosmetic fillers. J Clin Exp Dent. 2012 Oct 1;4(4):e244-7. doi: 10.4317/jced.50868
- 14. Ogawa, R. Keloid and Hypertrophic Scars Are the Result of Chronic Inflammation in the Reticular Dermis. *Int. J. Mol. Sci.* **2017**, *18*, 606. https://doi.org/10.3390/ijms18030606
- S. Lee J, DiChiaro B, Ogrodnik J. Higher Rate of Obesity and Keloid Recurrence in Patients Living in Food Deserts. *Journal of Clinical Dermatology and Surgery*. 2024;2(2). doi:10.61853/v7k44m68

- 16. Goldman A, Wollina U, França K, et al. Chronic Encapsulated Seroma Persisting for Three Years after Abdominoplasty and a Successful Surgical Solution. Open Access Maced J Med Sci 2018;6:82-4.
- Azharudeen M, V R, Kt S, Bin Ismail I, Sai E M, P A J. Effects of nutritional intervention on total protein and albumin levels in patients with maxillofacial trauma receiving intermaxillary fixation: a randomized controlled trial. Oral Maxillofac Surg. 2025 Jul 9;29(1):133. doi: 10.1007/s10006-025-01429-0.
- Rallis, E.; Lotsaris, K.; Grech, V.-S.; Tertipi, N.; Sfyri, E.; Kefala, V. The Nutrient–Skin Connection: Diagnosing Eating Disorders Through Dermatologic Signs. Nutrients 2024, 16, 4354. https://doi.org/10.3390/nu16244354
- 19. Nawaz S, Chinnadurai R, Al-Chalabi S, Evans P, Kalra PA, Syed AA, Sinha S. Obesity and chronic kidney disease: A current review. Obes Sci Pract. 2022 Jul 19;9(2):61-74. doi: 10.1002/osp4.629.
- 20. Moran SL, Salgado CJ, Serletti JM. Free tissue transfer in patients with renal disease. Plast Reconstr Surg. 2004;113:2006–11. doi: 10.1097/01.prs.0000122214.55090.16.
- 21. Senapati A, Slavin BM, Thompson RP. Zinc depletion and complications of surgery. Clin Nutr. 1990 Dec;9(6):341-6. doi: 10.1016/0261-5614(90)90008-g. PMID: 16837383.
- 22. Vitagliano T, Garieri P, Lascala L, Ferro Y, Doldo P, Pujia R, Pujia A, Montalcini T, Greco M, Mazza E. Preparing Patients for Cosmetic Surgery and Aesthetic Procedures: Ensuring an Optimal Nutritional Status for Successful Results. Nutrients. 2023 Jan 10;15(2):352. doi: 10.3390/nu15020352.
- Pradhan, N.; Kerner, J.; Campos, L.A.; Dobre, M. Personalized Nutrition in Chronic Kidney Disease. Biomedicines 2025, 13, 647. https://doi.org/10.3390/biomedicines13030647
- 24. Avin KG, Moorthi RN. Bone is Not Alone: the Effects of Skeletal Muscle Dysfunction in Chronic Kidney Disease. Curr Osteoporos Rep. 2015 Jun;13(3):173-9. doi: 10.1007/s11914-015-0261-4.
- Müller M, Dahdal S, Saffarini M, Uehlinger D, Arampatzis S. Evaluation of nutrition risk screening score 2002 (NRS) assessment in hospitalized chronic kidney disease patient. PLoS ONE. (2019) 14:1–11. doi: 10.1371/journal.pone.0211200.
- Rezeq HA, Khdair LN, Hamdan ZI, Sweileh WM. Prevalence of malnutrition in hemodialysis patients: a single-center study in Palestine. Saudi J Kidney Dis Transplant Official Publ Saudi Center Organ Transplant Saudi Arabia. (2018) 29:332–40. doi: 10.4103/1319-2442.229264